

EC/PAS 62707-1:2011(E)

Edition 1.0 2011-03

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2011 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Catalogue of IEC publications: <u>www.iec.ch/searchpub</u>

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications

IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details wice a month all new publications released. Available on-line and also by email.

Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: <u>nww.iec.ch/webstore/custserv</u>
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:

Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

Edition 1.0 2011-03

colour inside

PUBLICLY AVAILABLE SPECIFICATION

PRE-STANDARD

LED – Binning – Ch Star Part 1: General requirements and white grid

https://standards.itel

197-de7c-4d6a-a149-587aaf26909e/iec-

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

ICS 29.140.99

ISBN 978-2-88912-402-2

CONTENTS

FOF	REWC)RD	.3					
1	Scop	e	.5					
2	Normative references							
3	Terms and definitions							
4	Chror	maticity bins for white LEDs	.6					
	4.1	Grid for white LEDs	.6					
	4.2	White colour bins	. 8					
	4.3	Code for the chromaticity of white LEDs	8					
		4.3.1 Optional six digit code for the designation of white colour bins in x, y colour space	. 8					
		4.3.2 Other codes for the designation of white colour bins	10					
5	Bin co	ode	10					
Ann	iex A ((informative) White binning grid coordinates	11					
Figu	ure 1 -	– Extension of the Planckian locus beyond T_{∞}	7					
Figu	ure 2 -	- Example of grid points with short (four eigit) designation	10					
Figu	ure 3 -	- Example of white colour bip *habB22*	10					
Tab	le 1 –	Code for p	9					
Tab	le 2 –	Code for j	9					
Tab	le 3 –	Code for m and n	9					
Tab	le 4 –	Examples for white colour bin codes	9					
		standarus.uch in var je standarus.uch v 2197-de / c-4d0a-a149-387aa120909e/lec-						

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LED – BINNING –

Part 1: General requirements and white grid

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter keferred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as hearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

A PAS is a technical specification not fulfilling the requirements for a standard, but made available to the public.

IEC-PAS 62707-1 has been processed by subcommittee 34A: Lamps, of IEC technical committee 34: Lamps and related equipment.

The text of this PAS is based on the following document:	This PAS was approved for publication by the P-members of the committee concerned as indicated in the following document
Draft PAS	Report on voting
34A/1429/PAS	34A/1448/RVD

Following publication of this PAS, which is a pre-standard publication, the technical committee or subcommittee concerned may transform it into an International Standard.

This PAS shall remain valid for an initial maximum period of 3 years starting from the publication date. The validity may be extended for a single period up to a maximum of 3 years, at the end of which it shall be published as another type of normative document, or shall be withdrawn.

A list of all the parts in the IEC 62707 series, published under the general title LED - Binning can be found on the IEC website.

A bilingual version of this publication may be issued at a later date.

INPORTANT - The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

LED – BINNING –

Part 1: General requirements and white grid

1 Scope

This PAS specifies general requirements, a grid and a corresponding code for the colour binning of white LEDs emitting incoherent, visible radiation.

Other parts of this series covering chromaticity of coloured LEDs, Juminous flux/luminous intensity, colour rendering and forward voltage are in preparation or under consideration.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC/TS 62504, ____ General lighting - LEDs and LED modules - Terms and definitions¹

ISO 11664-1 (CIE S 014-1/E), Colorimetry – Part 1: CIE standard colorimetric observers

ISO 11664-5 (CIE S 014-5/E), Colorimetry - Part 5: CIE 1976 L*u*v* Colour space and u', v' uniform chromaticity scale diagram

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC/TS 62504 and the following apply.

3.1 bin

restricted range of LED performance characteristic used to delimit a subset of LEDs near a nominal LED performance as identified by chromaticity, photometric performance and forward voltage

(IEC/TS 62504: ____, 3.5)

3.2

grid

entity specified by a set of grid points

3.3

grid point

colour coordinate in the u', v' colour space according to ISO 11664-5 (CIE S 014-5/E) (or its equivalent in the x, y colour space according to ISO 11664-1 (CIE S 014-1/E)) identified by two discrete indices, the first index p counting steps along the Planckian locus, and its extension beyond the high temperature boundary towards blue colours, and second index j along Judd isothermal lines

¹ To be published

3.4

white colour bin

area inside a quadrilateral defined by four grid points

4 Chromaticity bins for white LEDs

4.1 Grid for white LEDs

The grid shall be aligned parallel along the Planckian locus, and its extension beyond the high temperature boundary towards blue colours, in the first direction (Planck-axis) and along Judd isothermal lines in the second direction (Judd-axis).

The origin of the grid shall be on the Planckian locus at T_{∞} (u'/v') = (0,18006/0,39528).

The distance between adjacent grid points along the Planckian locus and its extension beyond the high temperature boundary towards blue colours and along Judd isothermal lines in the u', v' colour space shall be s = 0,00174. Steps along the Planckian locus are counted with a positive index p, steps toward blue with a negative index p. Steps towards the saturated colour line (gamut) along the Judd-axis are counted with a positive index j and with negative index j in the opposite direction.

NOTE 1 = 0,00174 has been chosen as providing for the best alignment with existing chromaticity requirements.

The extension of the Planckian locus beyond \overline{I}_{∞} (towards blue) shall be defined as follows (see Figure 1 for information):

- Quadratic Bézier locus defined by three points;
 - $P_1: T_{\infty} (u'/v') = (0,18006/0,39528)$
 - $P_2: (u'/v') = (0,14122/0,15593)$
 - $P_3: (u'/v') = (0,25680,0,0165,9)$
- The Bézier locus is $B(t) = P_1 x (1,t)^2 + P_2 x t x (1-t) + P_3 x t^2; t \in (0,1)$

NOTE 2 P_2 is the intersection of spectral locus of the u', v' colour space and tangent of Planckian locus at T_{∞} in direction of blue wavelength.

NOTE 3 P3 corresponds to a wavelength of 380 nm on the spectral locus of the u', v' colour space.

The coordinates $u'_{BB}(p)$ and $v'_{BB}(p)$ of the grid points on the Planckian locus (BB = Black Body) are given in Annex A, as well as the unit increments $\Delta u'_{BB}(p)$ and $\Delta v'_{BB}(p)$ of the corresponding Judd isothermal lines.

The u' and v' coordinates of a grid point specified by the indices p and j are given by

 $u'(p, j) = u'_{BB}(p) + j \times \Delta u'_{BB}(p)$

 $v'(p, j) = v'_{BB}(p) + j \times \Delta v'_{BB}(p)$

or

u', v' (p, j) = (u'_{BB}(p) + j x $\Delta u'_{BB}(p)$; v'_{BB}(p) + j x $\Delta v'_{BB}(p)$)

The index (p, j) = (0, 0) corresponds to the T_{∞} point and the coordinates are (rounded to five digits):

u'(0, 0) = 0,18006, v'(0, 0) = 0,39528 or

u', v'(0, 0) = (0, 18006; 0, 39528)

- 8 -

Grid points in the u', v' coordinate system can be translated into equivalent grid points in the x, y coordinate system using the following equations:

x(p, j) = 9u'(p, j)/(6u'(p, j) - 16v'(p, j) + 12)

y(p, j) = 4v'(p, j)/(6u'(p, j) - 16v'(p, j) + 12)

It is recommended to round grid point coordinates to 5 digits after the decimal sign.

4.2 White colour bins

White colour bins are specified as the area inside a quadrilateral. An origin (p, j) and a positive step size m, n along the Planckian locus (or its extension beyond T_{∞}) and the Judd lines respectively is given. The quadrilateral is constructed by connecting the four grid points

[u', v' (p, j)], [u', v' (p+m, j)], [u', v' (p, j+n)] and [u', v' (p+m, j+n)]

or

[x, y (p, j)], [x, y (p+m, j)], [x, y (p, j+n)] and [x, y (p+m, j+n)]

It should be noted that white colour bins with step sizes of m or n equal 1 are not considered to be practical in view of measurement accuracy.

4.3 Code for the chromaticity of white LEDs

4.3.1 Optional six digit code for the designation of white colour bins in x, y colour space

This subclause specifies an optional code for white colour bins in the x, y colour space using only six digits. The first four digits are reserved for the identification of the grid point representing the origin of the white colour bin. The last two digits are reserved for the number of steps along the Planckian locus (or its extension beyond T_{∞}) and the Judd lines respectively.

The first digit is

"e" for
$$p \ge 0$$
 and $j \ge 0$
"f" for $p \ge 0$ and $j \ge 0$
"g" for $p < 0$ and $j \ge 0$

"h" for p < 0 and j < 0

The second and third digits represent the absolute value of p starting at "aa". Only the following letters shall be used in the counting for the second and third digit:

abcdefghjklmnprstuvwxyz

The code for |p| is specified in Table 1.

Table 1 – Code for |p|

p	0	1	 7	8	
code	aa	ab	 ah	aj	

The fourth digits represent the absolute value of j starting at "A". Only the following letters shall be used in the counting for the second and third digit:

ABCDEFGHJKLMNPRSTUVWXYZ

The code for |j| is specified in Table 2.

Table 2 – Code for |j|

lil	0	1	 7	8
code	А	В	 Н	K / K '

The fifth and sixth digits represent the number of steps m and n along the Planckian locus (or its extension beyond T_{∞}) and the Judd lines respectively. The following characters shall be used in the counting for the fifth and sixth digit:

(1) 2 3 4 5 6 7 8 9 a b c d e f g h j k l m n p r s t u v w x y z

The code for m and n is specified in Table 3.

Table 3 – Code for m and n

iius.iicii.a	N A N			217/-0	IC / U-4	<u>fuua-ar-</u>
\land	m, n	8	62 97-1	-1011	11	
$\langle \rangle \rangle$	code	8	9	а	b	

Examples for white colour bin codes are given in the following Table 4.

Table 4 – Examples for white colour bin codes								
\nearrow	P	j	m	n	6 digit code			
\sim \sim	0	0	2	3	faaA23			
\sim	9	-3	5	6	eakC56			
	0	0	10	10	faaAaa			

An example of the codes of grid points around the T_{∞} point is given in Figure 2.