# INTERNATIONAL STANDARD

ISO 10838-1

First edition 2000-03-02

# Mechanical fittings for polyethylene piping systems for the supply of gaseous fuels —

# Part 1:

Metal fittings for pipes of nominal outside diameter less than or equal to 63 mm

iTeh STANDARD PREVIEW
Raccords mécaniques pour systèmes de canalisation en polyéthylène
destinée à la distribution de combustibles gazeux —

Partie 1: Raccords métalliques pour tubes de diamètre extérieur nominal inférieur ou égal à 63 mm

https://standards.iteh.ai/catalog/standards/sist/2555ec34-f135-42db-877c-2eef90110281/iso-10838-1-2000



#### **PDF** disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10838-1:2000 https://standards.iteh.ai/catalog/standards/sist/2555ec34-f135-42db-877c-2eef90110281/iso-10838-1-2000

#### © ISO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

# Contents

Page

| Foreword                                                         |                                                                                                                                                                                                                                                            | iv                 |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1                                                                | Scope                                                                                                                                                                                                                                                      | 1                  |
| 2                                                                | Normative references                                                                                                                                                                                                                                       | 1                  |
| 3                                                                | Terms and definitions                                                                                                                                                                                                                                      | 2                  |
| 4                                                                | Symbols and abbreviated terms                                                                                                                                                                                                                              | 3                  |
| 5<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5                             | Materials  General  Metal components  Plastics materials  Elastomers  Other materials                                                                                                                                                                      | 4<br>4<br>5        |
| 6<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6<br>6.7<br>6.8<br>6.9 | Individual fittings  Design and construction  Appearance  Fittings with socket fusion ends  Fittings with spigot ends 1                                                                                                                                    | 6<br>6<br>6<br>6   |
| 7                                                                | Test pieces                                                                                                                                                                                                                                                |                    |
| 8<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6                      | Test requirements  Leaktightness test  Leaktightness with bending and temperature cycling  Leaktightness after tensile testing  Hydrostatic strength  Determination of gaseous flow rate/pressure drop relationship  Sturdiness of metallic female threads | 7<br>7<br>7<br>7   |
| 9<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5<br>9.6                      | Test methods Leaktightness testing Leaktightness with bending and temperature cycling Leaktightness after tensile testing Hydrostatic strength at 80 °C Determination of gaseous flow rate/pressure drop relationship Sturdiness of internal threads       | 8<br>9<br>11<br>11 |
| 10<br>10.1<br>10.2<br>10.3                                       | Marking  General  Permanent marking (e.g. by moulding or indent marking on the body of the fitting)  Permanent marking on the fitting or on a label                                                                                                        | 11<br>12<br>12     |
| 11                                                               | Packaging and storage                                                                                                                                                                                                                                      | 12                 |

## **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 10838 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 10838-1 was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 4, *Plastics pipes and fittings for the supply of gaseous fuels*.

ISO 10838 consists of the following parts, under the general title Mechanical fittings for polyethylene piping systems for the supply of gaseous fuels:

- (standards.iteh.ai)
   Part 1: Metal fittings for pipes of nominal outside diameter less than or equal to 63 mm
- Part 2: Metal fittings for pipes of nominal outside diameter greater than 63 mm
- Part 3: Thermoplastics fittings for pipes of nominal outside diameter less than or equal to 63 mm

# Mechanical fittings for polyethylene piping systems for the supply of gaseous fuels —

# Part 1:

# Metal fittings for pipes of nominal outside diameter less than or equal to 63 mm

WARNING — This part of ISO 10838 does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this part of ISO 10838 to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

# 1 Scope

This part of ISO 10838 specifies requirements and test methods for full-end-load-resistant mechanical pipe-jointing systems for connecting, to each other or to a metal pipe or fitting, polyethylene (PE) pipes, conforming to ISO 4437, of nominal outside diameter less than or equal to 63 mm.

In addition, it specifies certain general properties of the material from which these fittings are made.

This part of ISO 10838 specifies dimensional requirements for and the performance of, such assemblies.

https://standards.iteh.ai/catalog/standards/sist/2555ec34-f135-42db-877c-

It is applicable to mechanical fittings in which all lload-bearing elements of the joint are metal. They are intended for use with PE pipes designed for the supply of gaseous fuels, these fittings producing either permanent joints or joints which can be dismantled.

If intended for assembly with a metal pipe or fitting, such connections may comprise screw threads, compression joints, or flanged or welded connections.

This part of ISO 10838 is applicable only to mechanical fittings with normal operating-temperature limits between – 20 °C and +40 °C, unless otherwise agreed between interested parties.

It is the purpose of this part of ISO 10838 to provide performance requirements that will ensure that mechanical pipe-jointing systems will provide full sealing and full restraint of the PE piping so that the PE piping will yield rather than pull out of the mechanical joint when subjected to tensile forces or pressure.

#### 2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 10838. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 10838 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 7-1:1994, Pipe threads where pressure-tight joints are made on the threads — Part 1: Dimensions, tolerances and designation.

© ISO 2000 – All rights reserved

ISO 7-2:1999, Pipe threads where pressure-tight joints are made on the threads — Part 2: Verification by means of limit gauges.

ISO 1167:1996, Thermoplastics pipes for the conveyance of fluids — Resistance to internal pressure — Test method.

ISO 3458:1976, Assembled joints between fittings and polyethylene (PE) pressure pipes — Test of leakproofness under internal pressure.

ISO 3503:1976, Assembled joints between fittings and polyethylene (PE) pressure pipes — Test of leakproofness under internal pressure when subjected to bending.

ISO 4065:1996, Thermoplastics pipes — Universal wall thickness table.

ISO 4437:1997, Buried polyethylene (PE) pipes for the supply of gaseous fuels — Metric series — Specifications.

ISO 6447:1983, Rubber seals — Joint rings used for gas supply pipes and fittings — Specification for material.

ISO 8085-1:—<sup>1)</sup>, Polyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications — Part 1: Fittings for socket fusion using heated tools.

ISO 8085-2:—<sup>1)</sup>, Polyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications — Part 2: Spigot fittings for butt or socket fusion using heated tools and spigot fittings for use with electrofusion fittings.

ISO 8085-3:—<sup>1)</sup>, Polyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications — Part 3: Electrofusion fittings.

ISO 9080:—<sup>2)</sup>, Plastics piping and ducting systems — Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation 10838-1:2000

https://standards.iteh.ai/catalog/standards/sist/2555ec34-f135-42db-877c-

ISO 12162:1995, Thermoplastics materials for pipes and fittings for pressure applications — Classification and designation — Overall service (design) coefficient.

EN 837-1:1996, Pressure gauges — Part 1: Bourdon tube pressure gauges — Dimensions, metrology, requirements and testing.

EN 12117:1997, Plastics piping systems — Fittings, valves and ancillaries — Determination of gaseous flow rate/pressure drop relationships.

#### 3 Terms and definitions

For the purposes of this part of ISO 10838, the following terms and definitions apply:

#### 3.1

#### maximum operating pressure

maximum pressure at which a system can be operated continuously under normal conditions

#### 3.2

#### mechanical fitting

fitting for assembling PE pipes with each other or with a metal pipe or fitting, which includes one or more compression zones to provide pressure integrity, leaktightness and resistance to end loads

<sup>1)</sup> To be published.

<sup>2)</sup> To be published. (Revision of ISO/TR 9080:1992)

#### 3.3

#### full-end-load resistance

combination of component and joint design and characteristics such that under any load condition the pipe will fail first

#### 3.4

#### stiffener insert

rigid internal tubular stiffener that provides permanent support for the PE pipe to prevent creep in the pipe wall under radial compressive forces

#### 3.5

### grip ring

ring that holds the PE pipes in place and prevents pull-out from the fitting

NOTE In some cases, the stiffener insert also constitutes a grip ring.

#### 3.6

#### batch of fittings

specified and marked quantity of fittings of given type and dimensions

#### 3.7

#### initial type test

test performed to prove that the material, a component or an assembly, after it has been designed or the design modified, conforms to the requirements given in a standard

# 3.8 iTeh STANDARD PREVIEW

#### minimum bore

smallest internal diameter,  $d_i$ , measured at any cross-section of the fitting assembly

# 3.9

# fitting assembly

ISO 10838-1:2000

complete joint assembly, consisting of a PE pipe jointed, by means of a mechanical pipe-jointing system, to another PE pipe or to a metal pipe or fitting

#### 3.10

### virgin material

thermoplastics material in the form of granules or powder which has not been previously processed other than for compounding and to which no reprocessable or recyclable materials have been added

#### 3.11

#### reprocessable material

thermoplastics material, prepared from clean unused rejected pipes, fittings or valves, produced in a manufacturer's plant by a process such as injection-moulding or extrusion, which will be reprocessed in the same plant

NOTE Such material may include trimmings from the production of such pipes, fittings and valves.

#### 3.12

#### accuracy class

(pressure gauge) the maximum permissible error of the gauge, expressed as a percentage of the measurement range

## 4 Symbols and abbreviated terms

CTL constant tensile load

d<sub>i</sub> the minimum inside diameter of a fitting assembly

© ISO 2000 – All rights reserved

#### ISO 10838-1:2000(E)

MOP maximum operating pressure

MRS minimum required strength (ISO 12162)

PE polyethylene

the cross-sectional area of a pipe wall, in square millimetres, calculated using the measured average

outside diameter and the minimum wall thickness

SDR standard dimension ratio (ISO 4065)

 $T_{
m max}$  the maximum temperature to which a fitting and pipe may be exposed during normal operation

 $T_{\min}$  the minimum temperature to which a fitting and pipe may be exposed during normal operation

 $\sigma$  the stress in the wall of a pipe

#### 5 Materials

#### 5.1 General

The materials from which the fitting components are made shall be such that the level of performance of these components shall at least be equal to that specified for the PE pipe connected to the fitting. Materials in contact with the PE pipe shall not prevent the pipe from conforming to its specification (for example ISO 4437).

Components exposed to corrosive conditions shall be of corrosion-resistant material or protected against corrosion.

If a lubricant has to be used for assembly, it is recommended that the material supplier be consulted on the suitability of lubricants for assembly. In contact with such a lubricant, the assembly shall conform to the requirements of this part of ISO 10838, and to ISO 4437 for the PE pipes used.

#### 5.2 Metal components

Metal bodies and other metal components shall conform to the relevant ISO standards. Other standards may be used in cases where suitable ISO standards do not exist. In all cases, fitness for purpose of the components shall be established.

#### 5.3 Plastics materials

#### 5.3.1 General

Determination of a long-term hydrostatic strength is critical in the selection of plastics materials as it is the first step in designing plastics fittings that will last the lifetime of PE piping that they connect.

Plastics materials for components intended to be pressure-containing and subject to continuous stress, either in hoop or tension, shall have an ISO material classification. The classification of thermoplastics materials shall be determined in accordance with ISO 12162; the extrapolation method for the long-term hydrostatic strength is given in ISO 9080. The classification of other plastics materials shall be obtained with the same extrapolation method, except that failure data may be obtained from tensile bars, plane-strain specimens and actual fitting specimens.

Materials in long-term contact with natural gas of line quality and/or LPG vapour shall conform to the requirements of this part of ISO 10838.

Materials shall have a demonstrated resistance to environmental stress cracking when exposed, under stress, to chemical compounds encountered in, or external to, gas piping systems, and a demonstrated resistance to bacteriological decomposition. Such compounds include, but are not limited to, ice-thawing chemicals, fertilizers,

insecticides, herbicides, leak-detection fluids, acids, bases and antifreeze solutions used to thaw frozen lines. Liquids such as antifreeze agents, odorants and hydrocarbons are known to have deleterious effects on some plastics, particularly under service conditions.

Pressure-bearing components shall be produced from virgin materials, reprocessable material or a combination of virgin and reprocessable material. Only clean reprocessable material generated from a manufacturer's own production of fittings to this part of ISO 10838 may be used, and it shall be derived from the same resin as used for the relevant production.

#### 5.3.2 Polyethylene materials

Extruded polyethylene parts of jointing systems shall conform to the requirements of ISO 4437. The PE material shall have a minimum classification of MRS 8.

Injection-moulded polyethylene parts of jointing systems shall conform to the requirements of ISO 8085-1, ISO 8085-2 or ISO 8085-3, as applicable. The PE material shall have a minimum classification of MRS 8.

Pressure-bearing plastics components which are not covered by one of the parts of ISO 8085 or by ISO 4437 shall conform to the requirements of ISO 10838-3.

#### 5.4 Elastomers

Elastomeric sealing components shall conform to the requirements of ISO 6447.

# 5.5 Other materials iTeh STANDARD PREVIEW

Other materials, not covered by 5.2, 5.3 and 5.4, conforming to 5.1 may be used, provided that the fittings conform to this part of ISO 10838.

ISO 10838-1:2000

https://standards.iteh.ai/catalog/standards/sist/2555ec34-f135-42db-877c-

# 6 Individual fittings

2eef90110281/iso-10838-1-2000

#### 6.1 Design and construction

The fitting shall be capable of field assembly on a PE pipe conforming to ISO 4437 within a temperature range of -5 °C to +40 °C. If special mechanical assembly tools are required, they shall be supplied by the manufacturer of the fitting.

NOTE 1 The fittings should have sufficiently large bearing surfaces to avoid deformation during assembly. The fitting and tools should be designed to avoid any weakening which influences the performance of the joint assembly.

The fitting assembled with PE pipes conforming to ISO 4437 shall meet the requirements of this part of ISO 10838, irrespective of the pipe material and the pipe dimension tolerances, provided these are within the tolerance range given in ISO 4437.

A stiffener insert, which shall be rigid and shall not be a split tube, shall be used in conjunction with the fitting.

Except for pre-assembled fittings, this stiffener shall be provided with a means to control its position in the pipe.

The stiffener shall provide support over the entire compression area and there shall be no longitudinal displacement of the stiffener after assembly. A fitting shall have only one stiffener insert for each combination of diameter and SDR series of the pipe with which it is assembled.

The pressure drop across the fitting shall be kept to a minimum.

The fitting shall not induce twisting of the PE pipe during assembly.

© ISO 2000 – All rights reserved