Standard Specification and Temperature-Electromotive Force (EMF) Tables for Standardized Thermocouples¹

This standard is issued under the fixed designation E 230; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification contains reference tables (Tables 8–23) that give temperature-electromotive force (emf) relationships for Types B, E, J, K, N, R, S, and T thermocouples.² These are the thermocouple types most commonly used in industry.
- 1.2 Also included are lists of standard and special tolerances on initial values of emf versus temperature for thermocouples (Table 1), thermocouple extension wires (Table 2), and compensating extension wires for thermocouples (Table 3).
- 1.3 Tables 4–5, included herein, give data on insulation color coding for thermocouple and thermocouple extension wires as customarily used in the United States.
- 1.4 Recommendations regarding upper temperature limits for the thermocouple types referred to in 1.1 are given in Table 6.
- 1.5 Tables 24–43 give temperature-emf data for single-leg thermoelements referenced to platinum (NIST Pt 67). The tables include values for Types BP, BN, JP, JN, KP (same as EP), KN, NP, NN, TP, and TN (same as EN).
- 1.6 Tables for Types RP, RN, SP, and SN thermoelements are not included since, nominally, Tables 18–21 represent the thermoelectric properties of Type RP and SP thermoelements referenced to pure platinum.
- 1.7 Polynomial coefficients that may be used for computation of thermocouple emf as a function of temperature are given in Table 7. Coefficients for the emf of each thermocouple pair as well as for the emf of individual thermoelements versus platinum are included.
- 1.8 Coefficients for sets of inverse polynomials are given in Table 44. These may be used for computing a close approximation of temperature (°C) as a function of thermocouple emf. Inverse functions are provided only for thermocouple pairs and are valid only over the emf ranges specified.
 - 1.9 This specification is intended to define the thermoelec-

tric properties of materials that conform to the relationships presented in the tables of this standard and bear the letter designations contained herein. Topics such as ordering information, physical and mechanical properties, workmanship, testing, and marking are not addressed in this specification. The user is referred to specific standards such as Specifications E 235, E 574, E 585, E 608, E 1159, or E 1223, as appropriate, for guidance in these areas.

1.10 The temperature-emf data in this specification are intended for industrial and laboratory use.

2. Referenced Documents

- 2.1 ASTM Standards:
- E 235 Specification for Thermocouples, Sheathed, Type K, for Nuclear or for Other High-Reliability Applications³
- E 574 Specification for Duplex, Base-Metal Thermocouple Wire with Glass Fiber or Silica Fiber Insulation³
- E 585 Specification for Sheathed Base-Metal Thermocouple Materials³
- E 608 Specification for Metal-Sheathed Base-Metal Thermocouples³
- E 1159 Specification for Thermocouple Materials, Platinum-Rhodium Alloys, and Platinum³
- E 1223 Specification for Type N Thermocouple Wire³
- 2.2 NIST Monograph:
- NIST Monograph 175 Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90⁴
- 2.3 *IEC Standard:*
- IEC 584-3 First edition, 1989

3. Source of Data

- 3.1 The data in these tables are based upon the SI volt⁵ and the International Temperature Scale of 1990.
- 3.2 The temperature-emf data in Tables 8–43 and the corresponding equations in Tables 7 and 44 for all of the

 $^{^{\}rm 1}$ These tables are under the jurisdiction of ASTM Committee E-20 on Temperature Measurement and are the direct responsibility of Subcommittee E20.04 on Thermocouples.

Current edition approved June 10, 1998. Published March 1999. Originally published as E 230 – 63. Last previous edition E 230 – 96 $^{\epsilon 1}$.

² These temperature-emf relationships have been revised as required by the international adoption in 1989 of a revised International Temperature Scale (ITS-90).

³ Annual Book of ASTM Standards, Vol 14.03.

⁴ Available from National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD 20899.

⁵ Discussed in NIST Technical Note 1263, Guidelines for Implementing the New Representations of the Volt and Ohm Effective January 1, 1990.

thermocouple types have been extracted from NIST Monograph 175.

Note 1—It is beyond the scope of this standard to discuss the origin of these tables, but if further information is desired, the reader should consult the NIST reference noted above.

3.3 These tables give emf values to three decimal places (1 $\mu V)$ at temperature intervals of one degree. Such tables are satisfactory for most industrial uses but may not be adequate for computer and similar applications. If greater precision is required, the reader should refer to the NIST reference noted above which includes tables giving emf values to four decimal places (0.1 $\mu V)$. Equations which permit easy and unique generation of the temperature-emf relationships will be found in Table 7. For convenience, coefficients of inverse polynomials that may be used to compute approximate temperature (°C) as a function of thermocouple emf are given in Table 44.

4. Thermocouple Types and Letter Designations

- 4.1 The letter symbols identifying each reference table are those which are in common use throughout industry and identify the following thermocouple calibrations:
- 4.1.1 *Type B*—Platinum-30% rhodium (+) versus platinum-6 % rhodium (-).
- 4.1.2 *Type E*—Nickel-10 % chromium (+) versus copper-45% nickel (constantan) (–).
- 4.1.3 *Type J*—Iron (+) versus copper-45% nickel (constantan) (–).
- 4.1.4 *Type K*—Nickel-10 % chromium (+) versus nickel-5 % (aluminum, silicon) (–) (Note 2).

Note 2—Silicon, or aluminum and silicon, may be present in combination with other elements.

- 4.1.5 *Type N*—Nickel-14 % chromium, 1½ % silicon (+) versus nickel-4½ % silicon-½ % magnesium (–).
- 4.1.6 *Type R*—Platinum-13 % rhodium (+) versus platinum (-).
- 4.1.7 *Type S*—Platinum-10 % rhodium (+) versus platinum (–).
- 4.1.8 *Type T*—Copper (+) versus copper-45% nickel (constantan) (-).
- 4.2 Each letter designation of 4.1 identifies a specific temperature-emf relationship (Tables 8–23) and may be applied to any thermocouple conforming thereto within stated tolerances on initial values of emf versus temperature, regardless of its composition.
- 4.3 The thermoelement identifying symbols in Tables 24 to 43 use the suffix letters P and N to denote, respectively, the positive and negative thermoelement of a given thermocouple type.
- 4.4 Tables 24 to 43 identify specific temperature-emf relationships of individual thermoelements with respect to platinum (NIST Pt-67). Although tolerances on initial values of emf versus temperature, in most cases, are not established for individual thermoelements with respect to platinum, the appropriate letter designation may be applied to any thermoelement which, when combined with its mating thermoelement, will form a thermocouple conforming to the corresponding table within the stated tolerances.

4.5 An overall suffix letter "X" (for example KX, TX, EPX, JNX) denotes an "extension grade" material whose thermoelectric properties will match those of the corresponding thermocouple type within the stated extension grade tolerances over a limited temperature span. Most base metal extension wires have the same nominal composition as the thermocouple wires with which they are intended to be used, whereas the *compensating* extension wires for noble metal thermocouple types (S, R, or B) are usually of a different, more economical composition whose properties nonetheless closely approximate those of the precious metal thermocouples with which they are to be used.

5. Tolerances on Initial Values of EMF versus Temperature

- 5.1 Thermocouples and matched thermocouple wire pairs are normally supplied to the tolerances on initial values of emf versus temperature listed in Table 1.
- 5.1.1 Tolerances on initial values of emf versus temperature for single-leg thermoelements referenced to platinum have been established only for Types KP and KN. These are supplied, by common practice, to a tolerance equivalent to one half the millivolt tolerance of the Type K thermocouple.
- 5.1.2 For all other thermocouple types, tolerances on initial values of emf versus temperature for single thermoelements, when required, should be established by agreement between the consumer and the producer.
- 5.1.3 In reference Tables 32, 33, 42, and 43, the thermoelements are identified by two thermoelement symbols indicating their applicability to two thermocouple types. This indicates that the temperature-electromotive force relationship of the table is typical of the referenced thermoelements over the temperature range given in Table 1 for the corresponding thermocouple type. It should not be assumed, however, that thermoelements used with one thermocouple type are interchangeable with those of the other, or that they have the same millivolt tolerances for the initial values of emf versus temperature.
- 5.2 Thermocouple extension wires and compensating extension wires are supplied to the tolerances on initial values of emf versus temperature shown in Tables 2–3.
- 5.2.1 The initial tolerances of extension grade materials and compensating extension materials apply over a more limited span of temperature than the corresponding thermocouple grade materials. Applicable temperature ranges, consistent with typical usage, are given in Tables 2–3.

6. Color Coding

- 6.1 Color codes for insulation on thermocouple grade materials, along with corresponding thermocouple and thermoelement letter designations, are given in Table 4.
- 6.2 Extension wires for thermocouples are distinguished by having an identifying color in the outer jacket as shown in Table 5, where letter designations for the extension thermoelements and pairs are also presented.
- 6.3 Information in Tables 4–5 is based on customary United States practice.

Note 3—Other insulation color coding conventions may be found in use elsewhere in the world.

7. List of Tables

7.1 Following is a list of the tables included in this standard:

7.1.1 General Tables:

Title
Tolerances on Initial Values of Emf versus Temperature for
Thermocouples
Tolerances on Initial Values of Emf versus Temperature for Ex-
tension Wires
Tolerances on Initial Values of Emf versus Temperature for
Compensating Extension Wires
United States Color Codes for Single and Duplex Insulated
Thermocouple Wires
United States Color Codes for Single and Duplex Insulated
Extension Wires
Suggested Upper Temperature Limits for Protected Thermo-
couples
Polynomial Coefficients for Generating Thermocouple EMF as
a Function of Temperature

7.1.2 EMF versus Temperature Tables for Thermocouples:

Table	Thermocouple	Temperature
Number	Type	Range ^A
8 9 10 11 12 13 14 15 16	B B E E J J K K N	0 to 1820°C 32 to 3308°F -270 to 1000°C -454 to 1832°F -210 to 1200°C -346 to 2192°F -270 to 1372°C -454 to 2500°F -270 to 1300°C -454 to 2372°F
18	R	-50 to 1768°C
19	R	-58 to 3214°F
20	S	-50 to 1768°C
21	S	-58 to 3214°F
22	T	-270 to 400°C
23	T	-454 to 752°F

https://standards.iteh.aj/catalog/standards/sist/fd

7.1.3 *EMF versus Temperature Tables for Thermoelements*:

Table Number	Thermocouple Type	Thermoele- ment Type	Temperature Range ^A
24	В	BP	0 to 1768°C
25	В	BP	32 to 3214°F
26	В	BN	0 to 1768°C
27	В	BN	32 to 3214°F
28	J	JP	-210 to 760°C
29	J	JP	-346 to 1400°F
30	J	JN	-210 to 760°C
31	J	JN	-346 to 1400°F
32	K or E	KP or EP	-270 to 1372°C
33	K or E	KP or EP	-454 to 2500°F
34	K	KN	-270 to 1372°C
35	K	KN	-454 to 2500°F
36	N	NP	-200 to 1300°C
37	N	NP	-328 to 2372°F
38	N	NN	-200 to 1300°C
39	N	NN	-328 to 2372°F
40	T	TP	-270 to 400°C
41	T	TP	-454 to 752°F
42	T or E	TN or EN	-270 to 1000°C
43	T or F	TN or FN	-454 to 1832°F

^A These temperature ranges represent the range of published temperature versus emf data for the thermocouple and thermoelement types listed. Refer to Table 6 for recommended maximum upper use temperature limits for a specific thermocouple wire size and type.

7.1.4 Supplementary Table:

Table Number	S
ards.i	Coefficients of Inverse Polynomials for Computation of Approximate Temperature as a Function of Thermocouple EMF

8. Keywords

8.1 emf computation; compensating extension wire; inverse polynomial; polynomial coefficient; reference tables; thermocouple; thermocouple extension wire; thermoelement; upper temperature limit

APPENDIX

(Nonmandatory Information)

X1. IEC COLOR CODE SYSTEM

X1.1 General

X1.1.1 The data presented in Tables 4–5 of this specification show the color coding required by this specification. Those colors are well established in the United States and have been in use as the national standard there for many years.

X1.1.2 In other parts of the world, there are alternative color

code systems, either now in use, or in process of being implemented.

X1.1.3 One such color code system is that established by the IEC. The IEC color code system is outlined here for reference. Table X1.1 shows the IEC standard colors for thermocouple cables, extension cables, and compensating cables.

TABLE 1 Tolerances on Initial Values of Emf vs. Temperature for Thermocouples

Note 1—Tolerances in this table apply to new essentially homogeneous thermocouple wire, normally in the size range 0.25 to 3 mm in diameter (No. 30 to No. 8 Awg) and used at temperatures not exceeding the recommended limits of Table 6. If used at higher temperatures these tolerances may not apply.

Note 2—At a given temperature that is expressed in °C, the tolerance expressed in °F is 1.8 times larger than the tolerance expressed in °C. Note that wherever applicable, percentage-based tolerances must be computed from temperatures that are expressed in °C.

Note 3—Caution: Users should be aware that certain characteristics of thermocouple materials, including the emf versus temperature relationship may change with time in use; consequently, test results and performance obtained at time of manufacture may not necessarily apply throughout an extended period of use. Tolerances given in this table apply only to new wire as delivered to the user and do not allow for changes in characteristics with use. The magnitude of such changes will depend on such factors as wire size, temperature, time of exposure, and environment. It should be further noted that due to possible changes in homogeneity, attempting to recalibrate used thermocouples is likely to yield irrelevant results, and is not recommended. However, it may be appropriate to compare used thermocouples in-situ with new or known good ones to ascertain their suitability for further service under the conditions of the comparison.

Temperature Range			Tolerances-Reference Junction 0°C (32°F)				
Thermo- couple			Standard Tolera	nces	Special Tolerances		
Type °C	°F	°C (whichever is greater)	°F	°C (whichever is greater)	°F		
T	0 to 370	32 to 700	±1 or ±0.75 %	Note 2	±0.5 or 0.4 %	Note 2	
J	0 to 760	32 to 1400	± 2.2 or ± 0.75 %		±1.1 or 0.4 %		
E	0 to 870	32 to 1600	± 1.7 or ± 0.5 %		± 1 or ± 0.4 %		
K or N	0 to 1260	32 to 2300	± 2.2 or ± 0.75 %		± 1.1 or ± 0.4 %		
R or S	0 to 1480	32 to 2700	±1.5 or ±0.25 %		± 0.6 or ± 0.1 %		
В	870 to 1700	1600 to 3100	±0.5 %		±0.25 %		
T^A	-200 to 0	-328 to 32	±1 or ±1.5 %		В		
E^A	-200 to 0	-328 to 32	±1.7 or ±1 %		В		
K^A	-200 to 0	-328 to 32	±2.2 or ±2 %		В		

A Thermocouples and thermocouple materials are normally supplied to meet the tolerances specified in the table for temperatures above 0 °C. The same materials, however, may not fall within the tolerances given for temperatures below °C in the second section of the table. If materials are required to meet the tolerances stated for temperatures below 0 °C the purchase order must so state. Selection of materials usually will be required.

Type E – 200 to 0 °C \pm 1 °C or \pm 0.5 % (whichever is greater)

Type T – 200 to 0 °C \pm 0.5 °C or \pm 0.8 % (whichever is greater)

Initial values of tolerance for Type J thermocouples at temperatures below 0 °C and special tolerances for Type K thermocouples below 0 °C are not given due to the characteristics of the materials.

TABLE 2 Tolerances on Initial Values of Emf vs. Temperature for Extension Wires 459 Mastin - 6230-98

Note 1—Tolerances in this table represent the maximum error contribution allowable from new and essentially homogeneous thermocouple extension wire when exposed to the full temperature range given in the table below. Extension grade materials are not intended for use outside the temperature range shown

Note 2—Thermocouple extension wire makes a contribution to the total thermoelectric signal that is dependent upon the temperature difference between the extreme ends of the extension wire length. The actual magnitude of any error introduced into a measuring circuit by homogeneous and correctly connected extension wires is equal to the algebraic difference of the deviations at its two end temperatures, as determined for that extension wire pair.

				Tolerances—Reference	e Junction 0°C (32°F)				
Thermocouple	nocouple Temperature F		Duple Temperature Range S		Temperature Range Standard Tolerances		Tolerances	Special 1	olerances
Туре	°C	(°F)	°C	(°F)	°C	(°F)			
TX	-60 to 100	(-75 to 200)	±1.0	(±1.8)	±0.5	(±0.9)			
JX	0 to 200	(32 to 400)	±2.2	(±4.0)	±1.1	(± 2.0)			
EX	0 to 200	(32 to 400)	±1.7	(±3.0)	±1.0	(±1.8)			
KX	0 to 200	(32 to 400)	±2.2	(±4.0)	±1.1	(±2.0)			
NX	0 to 200	(32 to 400)	±2.2	(±4.0)	±1.1	(±2.0)			

^BSpecial tolerances for temperatures below 0 °C are difficult to justify due to limited available information. However, the following values for Types E and T thermocouples are suggested as a guide for discussion between purchaser and supplier:

TABLE 3 Tolerances on Initial Values of Emf vs. Temperature for Compensating Extension Wires

Note 1—Tolerances in this table apply to new and essentially homogeneous thermocouple compensating extension wire when used at temperatures within the range given in the table below.

Note 2—Thermocouple compensating extension wire makes a contribution to the total thermoelectric signal that is dependent upon the temperature difference between the extreme ends of the compensating extension wire length.

			Toleran	ces—Reference Junction	0°C (32°F)
Thermocouple	Temperat	ture Range	Standard	Tolerances	Special Tolerances
Туре	°C	(°F)	°C	(°F)	
SX	0 to 200	(32 to 400)	±5	(±9)	A
RX	0 to 200	(32 to 400)	±5	(±9)	A
BX^B	0 to 200	(32 to 400)	±4.2	(±7.6)	A
$B^{\mathcal{C}}$	0 to 100	(32 to 200)	±3.7	(±6.7)	

^A Special tolerance grade compensating extension wires are not available.

TABLE 4 United States Color Codes for Single and Duplex Insulated Thermocouple Wire

Note 1—Data in this table represents customary practice in the United States of America. Different color code conventions may be found in use in other parts of the world.

Note 2—For some types of insulations, colors may appear as a stripe or trace strand. High temperature braided insulation is not normally color coded.

Note 3—The noble metal thermocouples are not normally supplied with colored insulations. However, if they were so furnished, the color codes for the corresponding single wire extensions would apply, with a brown overall jacket, where applicable.

Thermocouple Type	Thermoelement Designation	Individual Conductor Color	Overall Jacket Color
Т	iTah S	tandards	Brown
	TP (+)	Blue	
	TN (-)	Red	
J	(https://sta	ndards.ifeh.ai)	Brown
	JP (+)	White	
	JN (–)	Red	
E	Docume	ent Preview	Brown
	EP (+)	Purple	
	EN (-)	Red	
К	ΓΩΛ	M E230 08	Brown
	KP (+)	Yellow	
https://standards	s.iteh.ai/catalo_KN (-)hdards/sist/fde	ce7c31-ea8e-4Red0-ba91-f2765c	5dd59f/astm-e230-98
N			Brown
	NP (+)	Orange	
	NN (-)	Red	

^B Proprietary alloy compensating extension wire is available for use over a wide temperature range.

^C Special compensating extension wires are not necessary with Type B over the limited temperature range 0 to 50 °C (32 to 125 °F), where the use of non-compensated (copper/copper) conductors introduces no significant error. For a somewhat larger temperature gradient of 0 to 100 °C (32 to 210 °F) across the extension portion of the circuit, the use of non-compensated (copper/copper) extension wires may result in small errors, the magnitude of which will not exceed the tolerance values given in the table above for measurements above 1000 °C (1800 °F).

TABLE 5 United States Color Codes for Single and Duplex Insulated Extension Wire

Note 1—Data in this table represents customary practice in the United States of America. Different color code conventions may be found in use in other parts of the world.

Note 2—For some types of insulations, colors may appear as a stripe or trace strand. High temperature braided insulations are normally supplied without color code.

Thermocouple Type	Thermoelement Designation	Individual Conductor Color	Overall Jacket Color
TX			Blue
	TPX (+)	Blue	
	TNX (–)	Red, or Red/Blue Trace	
JX			Black
	JPX (+)	White	
	JNX (–)	Red, or Red/Black Trace	
EX			Purple
	EPX (+)	Purple	
	ENX (-)	Red, or Red/Purple Trace	
KX			Yellow
	KPX (+)	Yellow	
	KNX (-)	Red, or Red/Yellow Trace	
NX			Orange
	NPX (+)	Orange	
	NNX (-)	Red, or Red/Orange Trace	
RX or SX ^A			Green
	RPX/SPX (+)	Black	
	RNX/SNX (-)	Red, or Red/Black Trace	
BX ^B			Gray
	BPX (+)	Gray	
	BNX (-)	Red, or Red/Gray Trace	

^A Type R and S thermocouples utilize the same extension alloys.

TABLE 6 Suggested Upper Temperature Limits for Protected Thermocouples

Note 1—This table gives the recommended upper temperature limits for the various thermocouples and wire sizes. These limits apply to protected thermocouples, that is, thermocouples in conventional closed-end protecting tubes. They do not apply to sheathed thermocouples having compacted mineral oxide insulation.

Note 2—The temperature limits given here are intended only as a guide to the user and should not be taken as absolute values nor as guarantees of satisfactory life or performance. These types and sizes are sometimes used at temperatures above the given limits, but usually at the expense of stability or life or both. In other instances, it may be necessary to reduce the above limits in order to achieve adequate service. ASTM MNL-12^A and other literature sources should be consulted for additional applications information.

	Upper Temperature limit for Various Wire Sizes (Awg), °C (°F)							
Thermo- couple Type	No. 8 Gage (3.25 mm [0.128 in.])	No. 14 Gage (1.63 mm [0.064 in.])	No. 20 Gage (0.81 mm [0.032 in.])	No. 24 Gage (0.51 mm [0.020 in.])	No. 28 Gage (0.33 mm [0.013 in.])	No. 30 Gage (0.25 mm [0.010 in.])		
Т		370 (700)	260 (500)	200 (400)	200 (400)	150 (300)		
J	760 (1400)	590 (1100)	480 (900)	370 (700)	370 (700)	320 (600)		
Е	870 (1600)	650 (1200)	540 (1000)	430 (800)	430 (800)	370 (700)		
K and N	1260 (2300)	1090 (2000)	980 (1800)	870 (1600)	870 (1600)	760 (1400)		
R and S	, ,	. ,	, ,	1480 (2700)	, ,	, ,		
В				1700 (3100)				

^A Manual on the Use of Thermocouples in Temperature Measurement, ASTM MNL-12, 1993.

^B Color code shown is applicable to constructions incorporating proprietary Type B compensating extension alloy wires. When uncompensated (copper/copper) extension materials are used with Type B thermocouples, the extension wire insulation is not normally color coded.

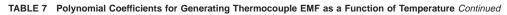
TABLE 7 Polynomial Coefficients for Generating Thermocouple EMF as a Function of Temperature

Note—The following table contains sets of polynomial coefficients used to compute emfs for the various types of thermocouples and for their individual thermoelements paired with Pt-67, when reference junctions are at °C.

Note—The coefficients given are for an expession of the form: $E = c_0 + c_1 t + c_2 t^2 + c_3 t^3 ... + c_n t^n$. In this expression, E is in millivolts, t is in °C, and c_0 , c_1 , $c_2 ... c_n$ are the coefficients given in the following table. For the Type K thermocouple and the Type KN thermoelement, coefficients b_0 and b_1 for an exponential term containing e, the natural logarithm base, also appear in the table. This term is of the form: $b_0 e b_{1(t-126.9686)2}$ and, where given, it is to be evaluated and added to the polynomial result.

Note—If emf values on another temperature scale are desired, first convert the desired temperature to its equivalent in °C, then evaluate the appropriate polynomial from the table below using the °C equivalent temperature

		TYPE B Thermocouple	e
Temperature		0 °C	630.615 °C
Range		to	to
		630.615 °C	1820 °C
	c _o =	0.0	-3.893 816 862 1
	C ₁ =	-2.465 081 834 6 x 10^{-4}	$2.857\ 174\ 747\ 0\ x\ 10^{-2}$
	G ²³ =	5.904 042 117 1 \times 10 ⁻⁶	-8.488 510 478 5 x 10 ⁻⁵
	C ₃ =	-1.325 793 163 6 x 10 3	1.578 528 016 4 x 10 ⁻⁷
	C4 =	1.566 829 190 1 x 10 ⁻¹²	-1.683 534 486 4 x 10
	C ₅ =	-1.694 452 924 0 x 10 15	1.110 979 401 3 x 10 ⁻¹³
	G =	6.299 034 709 4 \times 10 ⁻¹⁹	$-4.451\ 543\ 103\ 3\ \times\ 10^{-1.7}$
	C 7 =	••••••	9.897 564 082 1 \times 10 ⁻²¹
	C ^{es} =		-9.379 133 028 9 x 10 ⁻²⁵
		TYPE E Thermocouple	9
Temperature		-270 °C	0 °C
Range		to	to
		0 °C	1000 °C
	c _o =	o.oleh Standa	10.0 \$
	c, =	5.866 550 870 8 x 10 ⁻²	5.866 550 871 0 x 10 ⁻²
	C2 =	4.541 097 712 4 x 10 5	4.503 227 558 2 x 10 5
	C 3 =	-7.799 804 868 6 x 10	2.890 840 721 2 x 10 ⁻⁸
	C4 =	-2.580 016 084 3 x 10	~3.305 689 665 2 x 10 ⁻¹⁶
	c' =	-5.945 258 305 7 x 10 12	6.502 440 327 0 x 10 ⁻¹³
	ce =	-9.321 403 666 / X 10	-1.919 749 550 4 x 10 ⁻¹⁶
	C, =	-1.028 760 553 4 x 10 ^{-1.3}	-1.253 660 049 7 x 10 18
	Ce =	0.037 012 302 1 X 10	2.148 921 756 9 \times 10 ⁻²¹
	C ₉ =	-4.397 949 739 1 x 10 18	-1.438 804 178 2 x 10 ⁻²⁴
	c ₁₀ =	-1.641 477 635 5 x 10 20	3.596 089 948 1 \times 10 ⁻²⁸
	c ₁₁ =	-3.967 361 951 6 x 10 23 872 732 872 1 x 10 26 886	-4850-ba91-f2765c5dd59f/astm-e230-
	C13 =	-3.465 784 201 3 x 10	-485U-ba91-12/65c5dd59Tastm-e23U-
		TYPE J Thermocouple)
Temperature		-210 °C	760 °C
Ξ.		to	to
Range		760 00	
Range		760 °C	1200 °C
Range	C ₀ =	0.0	1200 °C 2.964 562 568 1 x 10 ²
Range	C ₀ =	0.0 5.038 118 781 5 x 10 ⁻²	2.964 562 568 1 x 10 ² -1.497 612 778 6
Range		0.0 5.038 118 781 5 x 10 ⁻² 3.047 583 693 0 x 10 ⁻⁵	2.964 562 568 1 x 10 ² -1.497 612 778 6 3.178 710 392 4 x 10 ⁻³
Range	C, =	0.0 5.038 118 781 5 x 10 ⁻² 3.047 583 693 0 x 10 ⁻⁵ -8.568 106 572 0 x 10 ⁻⁸	2.964 562 568 1 x 10 ² -1.497 612 778 6 3.178 710 392 4 x 10 ⁻³ -3.184 768 670 1 x 10 ⁻⁶
Range	$C_{3} = C_{3} = C_{4} = C_{4}$	0.0 5.038 118 781 5 x 10 ⁻² 3.047 583 693 0 x 10 ⁻⁵ -8.568 106 572 0 x 10 ⁻⁸ 1.322 819 529 5 x 10 ⁻¹⁰	2.964 562 568 1 x 10 ² -1.497 612 778 6 3.178 710 392 4 x 10 ⁻³ -3.184 768 670 1 x 10 6 1.572 081 900 4 x 10 9
Range	C ₃ = C ₂ = C ₄ = C ₅ =	0.0 5.038 118 781 5 x 10 ⁻² 3.047 583 693 0 x 10 ⁻⁵ -8.568 106 572 0 x 10 ⁻⁸ 1.322 819 529 5 x 10 ⁻¹⁰ -1.705 295 833 7 x 10 ⁻¹³	2.964 562 568 1 x 10 ² -1.497 612 778 6 3.178 710 392 4 x 10 ⁻³ -3.184 768 670 1 x 10 ⁻⁶
Range	C ₃ = C ₆ = C ₆ =	0.0 5.038 118 781 5 x 10 ⁻² 3.047 583 693 0 x 10 ⁻⁵ -8.568 106 572 0 x 10 ⁻⁶ 1.322 819 529 5 x 10 ⁻¹³ -1.705 295 833 7 x 10 ⁻¹³ 2.094 809 069 7 x 10 ⁻¹⁶	2.964 562 568 1 x 10 ² -1.497 612 778 6 3.178 710 392 4 x 10 ⁻³ -3.184 768 670 1 x 10 ⁻⁶ 1.572 081 900 4 x 10 ⁻⁹
Range	C ₃ = C ₂ = C ₄ = C ₅ =	0.0 5.038 118 781 5 x 10 ⁻² 3.047 583 693 0 x 10 ⁻⁵ -8.568 106 572 0 x 10 ⁻⁸ 1.322 819 529 5 x 10 ⁻¹⁰ -1.705 295 833 7 x 10 ⁻¹³	2.964 562 568 1 x 10 ² -1.497 612 778 6 3.178 710 392 4 x 10 ⁻³ -3.184 768 670 1 x 10 ⁻⁶ 1.572 081 900 4 x 10 ⁻⁹


TABLE 7 Polynomial Coefficients for Generating Thermocouple EMF as a Function of Temperature Continued

		TYPE K T	hermocoup.	le	
Temperature		-270 °C		0 °C	
Range		to		to	
,		0 °C		1372 °C	<u> </u>
	c _o =	0.0		-1.760 041 368	6 x 10 ⁻²
	C =	3.945 012 802	5 x 10 ⁻²	3.892 120 497	5 x 10 =
	c ₂ =	2.362 237 359	8 x 10 ⁻³	1.855 877 003	2 x 10
	c ₃ =	-3.285 890 678	4 x 10 ′	-9.945 759 287	4 x 10 ⁻⁰
	C4 =	-4.990 482 877	7 x 10 3	3.184 094 571	9 x 10
	C ₅ =	-6.750 905 917	3 x 10 13	-5.607 284 488	9 x 10
	c _e =	-5.741 032 742	8 x 10	5.607 505 905	9 x 10
	C - =	-3.108 887 289	4 x 10	-3.202 072 000	3 x 10
	C 8 =	-1.045 160 936	5 x 10	9.715 114 715	2 x 10
	c _e =	-1.988 926 687	8 x 10	-1.210 472 127	5 x 10
	c, =	-1.632 269 748	6 x 10		·
Exponential Coefficients	b ₀ =			1.185 976 :	x 10 ⁻¹
See NOTE 2	b ₁ =			-1.183 432 :	x 10
		TYPE N T	hermocoup	le	
Temperature		-270 °C		0 °C	
Range		to		to	
		0 °C		1300 °C	C
	c _o =	0.0	_	0.0	-7
	c ₁ =	2.615 910 596	2 x 10 ⁻²	2.592 939 460	1 x 10 -
	c ₂ =	1.095 748 422	8 x 10	1.571 014 188	0 x 10
	c ₃ =	-9.384 111 155	4 x 10	4.382 562 723	7 x 10
	C4 =	-4.641 203 975	9 x 10 -12	-2.526 116 979	4 x 10
	C ₅ ≖	-2.630 335 771	6 x 10	6.431 181 933	9 x 10
	ce =	-2.265 343 800	3 x 10	-1.006 347 151	9 x 10
	C ₇ =	-7.608 930 079	1 X 10	9.974 533 899 -6.086 324 560	2 X 10
	C ⁸ =	-9.341 966 783	5 x 10	2.084 922 933	7 x 10 0 x 10 ⁻²⁵
	C° =			-3.068 219 615	9 X 10 1 x 10 ⁻²⁹
	C ¹⁰ =			-3.000 219 013	1 X 10
		TYPE R	Thermocou	ple	
Temperature S. Mc Range	n.ai/cat2 ₅₀₂ to)	t		to
	1064.	18 °C	1664	.5 °C	1768.1 °C
c _o =	0.0	-3		253 16	1.522 321 182 09 x 10 ²
C , =	5.289 617	297 65 x 10 ⁻³	-2.520 612	513 32 x 10	-2.688 198 885 45 x 10 ⁻¹
c² =	1.391 665	397 82 x 10 ⁻⁵	1.595 645	018 65 x 10 ⁻⁵	1.712 802 804 71 x 10 ⁻⁴
c ₃ =	-2.388 556	930 17 x 10 ⁻⁸	-7.640 859	475 76 x 10 ⁻⁹	-3.458 957 064 53 x 10
C 4 =	3.569 160	010 63 x 10 ⁻¹¹	2.053 052	910 24 x 10 ⁻¹²	-9.346 339 710 46 x 10 ⁻¹⁵
C ₅ =	-4.623 476	562 98 x 10 ⁻¹⁴	-2.933 596	681 73 x 10 ⁻¹⁶	
G ^e =	5.007 774	410 34 x 10 ⁻¹⁷	• • • • • •	•••••	•••••
C ₂ =	-3.731 058	861 91 x 10 ⁻²⁰	•••••	•••••	
c _e =	1.577 164	823 67 x 10 ⁻²³ 252 51 x 10 ⁻²⁷	•••••	•••••	
c _e =	_2 810 386	262 K1 v 10			

TABLE 7 Polynomial Coefficients for Generating Thermocouple EMF as a Function of Temperature Continued

	TYP	E S Thermocouple	
Temperature	-50 °C	1064 ['] .18 °C	1664.5 °C
Range	to	to	to
	1064.18 °C	1664.5 °C	1768.1 °C
c _o =	0.0	1.329 004 440 85	1.466 282 326 36 x 10 ²
c ₁ =	$5.403 \ 133 \ 086 \ 31 \times 10^{-3}$	$3.345 093 113 44 \times 10^{-3}$	-2.584 305 167 52 x 10^{-1}
c, =	1.259 342 897 40 \times 10 ⁻⁵	$6.548\ 051\ 928\ 18\ \times\ 10^{-6}$	1.636 935 746 41 x 10^{-4}
c ₃ =	-2.324 779 686 89 x 10^{-8}	-1.648 562 592 09 x 10 ⁻⁹	-3.304 390 469 87 x 10^{-8}
C ₄ =	$3.220\ 288\ 230\ 36\ x\ 10^{-11}$	$1.299 896 051 74 \times 10^{-14}$	-9.432 236 906 12 x 10^{-15}
C ₂ = C ₃ = C ₄ = C ₅ = C ₆ = C ₇ = C ₈ =	-3.314 651 963 89 x 10 ⁻¹⁴		
c ₆ =	$2.557 442 517 86 10^{-17}$		
c ₇ =	-1.250 688 713 93 x 10^{-20} 2.714 431 761 45 x 10^{-24}		
C ₈ =	2./14 431 /61 45 X 10		
	TYP	E T Thermocouple	
Temperat	ure -270 °	C 0	°C
Range			0
	0 °C	400	°C
	c ₀ = 0.0	0.0	_
	c, = 3.874 810 636	5.4×10^{-2} 3.874 810	636 4 x 10 ⁻²
	$c_2^1 = 4.419 443 434$	1.7×10^{-5} 3.329 222	$788 \ 0 \ \times \ 10^{-5}$
	$c_2 = 4.419 443 434$ $c_3 = 1.184 432 310$	0.5×10^{-7} 2.061 824	340 4 x 10 ⁻⁷
	$C_A = 2.003 297 355$	5.4×10^{-6} -2.188 225	684 6 x 10 ⁻⁹
	c = 9.013 801 955	5 9 x 10 1.099 688	092 8 x 10 ⁻¹¹ 877 2 x 10 ⁻¹⁴
	$c_6^5 = 2.265 \ 115 \ 659$ $c_2 = 3.607 \ 115 \ 420$	3 X 10 -3.081 5/5	529 0 x 10 ⁻¹⁷
	$c_7 = 3.849 393 988$	3 3 x 10 ⁻¹⁵ -2 751 290	167 3 x 10 ⁻²⁰
	$c_0^8 = 2.821 352 192$	2.5×10^{-17}	
	$c_{10}^9 = 1.425 159 477$	9 x 10 ⁻¹⁹	
	$c_8 = 3.849 393 988$ $c_9 = 2.821 352 192$ $c_{10} = 1.425 159 477$ $c_{11} = 4.876 866 228$	6 x 10 ⁻²²	
	$C_{12} = 1.079 553 927$	0×10^{-24}	·h oi)
	$C_{13}^{12} = 1.394 502 706$	2×10^{-27}	511.211
	$c_{13}^{12} = 1.394 502 706$ $c_{14}^{13} = 7.979 515 392$	7 x 10 ⁻³¹	
		ıment Previe	NV
	TYPE BP Thermoele	ment vs. Platinum (NIST	Pt-67)
Temperat		630.615	°C
Range	to	ecASTM F230-98 1769 1	0.C †
lettre or//ete1-	630.615	Jaint/fd and Jay 1 and a 1050 la	01 0777 5 11507 / 227
	C ₀ = 0.0	7.300 043	
	$c_1^0 = 4.822787568$	$3 / \times 10^{-5}$ 6.394 111 0	021 3 x 10 ⁻²
	$c_2^1 = 1.565 116 570$	0.9×10^{-5} -1.710 242 1	141 U X 10 -7
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.055 5/8 2 7.4×10^{-11} $-3.210 574 4$	$252 7 \times 10^{-7}$
	$c_4 = 2.833 324 400$ $c_5 = -2.025 894 044$	7 x 10 -3.210 3/4 4 1 7 x 10 ⁻¹⁴ 2 090 910 2	79 4 x 10 ⁻¹³
	$c_z = 6.148 870 509$	6×10^{-18} -8.233 582 5	42 6 x 10 ⁻¹⁷
	C_ =		51 5 x 10 ⁻²⁰
	C ₇ =		18 7 x 10 ⁻²⁴

[†] Editorially corrected.

Temperature	0 °C		630.615 °C	
Range	to		to	
	630.615	, °C	1768.1°C †	
c ₀	= 0.0	- 7	-4.074 226 366 2	,
c ₁	= 5.069 295 75		3.536 936 274 3 x 10 -8.613 910 931 5 x 10	5
c ₂	= 9.747 123 59 = -2.090 800 47		1.477 050 236 2 x 10	7
C ₁ C ₂ C ₃ C ₄ C ₅ C ₆ C ₇	= 2.676 641 48	8 3 x 10 ⁻¹¹	-1.527 039 962 9 x 10 ⁻¹	.0
c ₌ ⁴	= -1.856 448 75	$2 \ 3 \ \times \ 10^{-14}$	9.799 308 780 5 x 10 ⁻³	.4
cé	= 5.518 967 03		$-3.782\ 039\ 439\ 3\ \times\ 10^{-3}$.7 1
C ₇	=		7.925 277 432 8 \times 10 ⁻² -6.807 941 157 8 \times 10 ⁻²	5
8	=	•	-0.807 941 137 8 X 10	
	TYPE JP Thermoel	lement vs. Pl	atinum (NIST Pt-67)	
	perature	-210 °C		
ŀ	Range	to 760 °C		
	c _o =	0.0		
	$c_1 = c_2 =$	1.791 354 855 9 4.677 466 335 8	x 10 ⁻²	
	c ₂ =	-7.122 599 299 1	× 10 ⁻⁸	
	$c_A^3 =$	1.335 212 501 6	$\times 10^{-10}$	
	c ₃ = c ₄ = c ₅ = c ₆ = c ₇ =	-1.500 896 263 9	× 10 ⁻¹³	
	C ₆ = C ₋ =	1.551 431 962 5 -7.950 357 212 5	x 10 -20	
	$c_8 = c_8$	2.429 790 391 0	x 10 ⁻²⁴	
	-8	en Stal	ndards	
	Platinum (NIST)	?t-67) vs. TY	PE JN Thermoelement	
Temp	perature VVVVV Range	-210 °C	ai us.iteii.a	
1		760°°	Droviow	
		0.0	I I EVIEW	
	$\begin{array}{ccc} \mathbf{c}_0 & = & \\ \mathbf{c}_1 & = & \\ \mathbf{c}_2 & = & \\ \mathbf{c}_3 & = & \\ \mathbf{c}_4 & = & \end{array}$	3.246 763 925 6	x 10 ⁻²	
	$c_2^{\dagger} =$	2.579 837 059 4		
	c ₃ = c =	-1.445 507 273 0 1.239 297 209 3	x 10 °	
	eh.ai/catalœ∮/s t andar	-2.043 995 698 0	x :10 ⁻¹⁴ 4850-ha91-f27	
	ch.ai/catalcc <mark>*</mark> /s=indar c ₆ = c ₇ =	5.433 771 071 8	$\times 10^{-17}$	
	c ₇ =	-4.588 038 123 5	× 10 ⁻²⁰	
	C ₈ =	1.320 193 530 6	x 10 = 3	
TY	PE KP or EP There	noelement vs.	Platinum (NIST Pt-6	7)
Temperature	-270		0 °C	
Range	to		to	
	0 °0	3	1372 °C	
c _o	= 0.0	-7.4 20-2	0.0	-2
c ₁	= 2.581 195 05 = 2.299 008 89	9/ 4 X 10 ⁻	2.581 195 057 3 x 10 2.683 139 535 5 x 10	-5
c ₂	= 2.299 008 85 = -6.157 475 44	16 0 x 10 ⁻⁷	-3.867 519 441 2 x 10	-8
c.	= -2.327 184 37	76 5 x 10 ⁻⁸	3.030 555 323 4 x 10	-11
C _s	= -5.457 033 35	59 6 x 10 ⁻¹⁰	-1.028 040 353 3 x 10	-14
င္မိ	= -7.845 394 22	6 4 × 10 ⁻¹²	-3.448 171 733 0 x 10	-20
c ₇	= -7.251 284 06 = -4.356 917 47	0 8 X 10 -*	8.251 289 448 0 x 10 -7.889 338 217 7 x 10	-23
C _B	= -4.356 917 47 $= -1.664 752 76$	50 6 x 10 ⁻¹⁸	3.569 925 312 6 x 10	-26
c ₀ c ₁ c ₂ c ₃ c ₄ c ₅ c ₆ c ₇ c ₈ c ₉ c ₁₀	= -3.737 720 75	0 1 x 10 ⁻²¹	-6.331 536 065 9 x 10	-30
10	= -3.774 144 26	9.5×10^{-24}		
c ₁₁				
c ₁₁ c ₁₂ c ₁₃	= 1.002 535 55 = 3.893 531 07	9 0 x 10 ⁻²⁷		

[†] Editorially corrected.

TABLE 7 Polynomial Coefficients for Generating Thermocouple EMF as a Function of Temperature Continued

		(NIST Pt-67) vs. TYI	EMF as a Function of Temperature Continued PE KN Thermoelement	
Temperature		-270 °C	0 °C	
Range		to	to	
		0 °C	1372 °C	
	c _o =	0.0	-1.760 041 368 6 x 10 ⁻²	
	c _a =	1.363 817 745 2 x 10^{-2}	1.310 925 440 3 \times 10 ⁻²	
	c ₂ =	6.322 846 542 6 x 10 ⁻⁷	-8.272 625 323 0 x 10 ⁻⁸	
	C3 =	2.871 584 767 6 x 10^{-7}	-6.078 239 846 2 x 10 ⁻⁸	
	C4 =	1.828 136 088 7 x 10 ⁻⁸	2.881 039 039 6 x 10 ⁻¹⁰	
	c = =	4.781 942 767 9 x 10 ⁻¹⁶ 7.271 290 952 1 x 10 ⁻¹²	-5.504 480 453 6 x $10^{-1.3}$ 5.952 323 079 2 x $10^{-1.6}$	
	c, =	$6.940 395 331 9 \times 10^{-14}$	-4.027 200 945 1 x 10 19	
	C _B =	4.252 401 385 5 x 10 ⁻¹⁶	1.760 445 293 3 x 10 ⁻²²	
	Co =	1.644 863 493 8 x 10 ⁻¹⁸	-4.780 397 440 1 x 10 ⁻²⁶	
	C ₁₀ =	3.721 398 052 6 x 10 ⁻²¹	6.331 536 065 9 x 10 ⁻³⁰	
	C ₁₁ =	$3.774\ 144\ 269\ 5\ x\ 10^{-24}$	*******	
	c ₁₂ =	-1.002 535 559 0 x 10^{-27}		
	C13 =	-3.893 531 072 5 x 10 ⁻³⁰		
			-1	
Exponential Coefficients	b ₀ =	•••••	1.185 976 x 10 ⁻¹	
See NOTE 2	b ₁ =	**********	-1.183 432 x 10 ⁻⁴	
***************************************	TYPE NP T	Thermoelement vs. Pla	atinum (NIST Pt-67)	
Temperature	ļ	-200 °C	0 °C	
Range		to	to	
		0 °C	1300 °C	
	c _o =	o.o len Stan	da o.ols	
	c ₁ =	1.541 798 843 0 x 10 ⁻²	1.544 538 594 7 x 10^{-2}	
	C ₂ =	2.570 738 245 7 x 10 ⁻⁵	2.672 234 128 9 x 10 ⁻⁵	
	C3 =	-9.018 782 577 1 x 10	-2.559 531 305 2 x 10 ⁻⁸	
	C4 =	-5.365 479 300 5 x 10 ⁻¹⁶	-3.302 809 741 4 x 10 ⁻¹¹	
	c ₅ =	-3.352 621 597 6 x 10 ⁻¹² -7.272 344 767 0 x 10 ⁻¹⁵	2.007 532 297 1 x 10 ⁻¹³ -4.270 815 423 0 x 10 ⁻¹⁶	
	c _e =	-7.272 344 767 0 x 10	5.181 347 352 2 x 10 ⁻¹⁹	
	C ₇ =		-3.688 712 493 1 x 10 ⁻²²	
	C _a =		1.426 873 470 8 x 10 ⁻²⁵	
	C ₁₀ =	ASTM F230)_98 -2.312 130 215 4 x 10 ⁻²⁹	
	1 1/ / 1			
nttps://standards.ite	Platinum	(NIST Pt-67) vs. TY	PE NN Thermoelement	n 623U-93
Temperature		-200 °C	0 °C	
Range		to	to	
-		0 °C	1300 °C	
	c _o =	0.0	0.0	
	c ₁ =	1.074 111 753 2 x 10 ⁻²	1.048 400 865 5 x 10 ⁻²	
	C ₂ =	-1.474 989 822 9 x 10 ⁻⁵	-1.101 219 940 9 x 10 ⁻⁵	
	C _a =	-3.653 285 783 2 x 10 ⁻⁹	$6.942 094 028 9 \times 10^{-8}$ -2.195 836 005 3 x 10 ⁻¹⁰	
	C ₄ =	4.901 358 902 9 \times 10 ⁻¹⁰ 7.222 858 260 4 \times 10 ⁻¹³	-2.195 836 005 3 x 10 4.423 649 636 8 x 10	
	C ₅ =	-1.538 109 323 6 x 10	-5.792 656 096 4 x 10 16	
	C ₅ =	-7.608 930 079 1 x 10 ⁻¹⁷	4.793 186 547 0 x 10 19	
	C ₂ =	-9.341 966 783 5 x 10 ⁻²⁶	-2.397 612 067 6 x 10 ⁻²²	
	C =	3.341 300 703 3 X 10	$6.580 494 631 8 \times 10^{-28}$	
	C ₁₀ ≠		-7.560 893 996 5 x 10^{-36}	

TABLE 7 Polynomial Coefficients for Generating Thermocouple EMF as a Function of Temperature Continued

_	YPE TP 1	hermoelement vs. Pla	tinum (NIST Pt-67)
Temperature		−270 °C	0 °C
Range		to	to
90		0 °C	400 °C
	c ₀ =	0.0	0.0
	C ₃ =	5.894 548 229 7 \times 10 $^{-3}$	5.894 548 226 5 \times 10 ⁻³
	c ₂ =	2.177 354 616 7 x 10 ⁻⁵	1.509 134 765 2 x 10 ⁻⁵
	c, =	2.826 761 733 1 x 10 /	1.385 988 324 2 x 10 '
	C ₄ =	2.256 129 063 2 x 10 3	-1.827 351 164 9 x 10 ⁻⁹
	C ₅ =	9.502 026 902 0 x 10 ⁻¹⁰	1.033 635 649 1 x 10 ⁻¹¹
	C _e =	2.412 716 823 3 x 10 ⁻¹¹	-3.065 826 553 4 x 10 ⁻¹⁴
	C ₇ =	3.910 747 567 8 x 10	4.681 530 823 5 x 10 1
	Ce =	4.217 403 476 6 x 10 ⁻¹⁵	-2.974 071 681 2 x 10 ⁻²⁰
	C _p =	3.094 671 890 4 x 10 ⁻¹⁷	1.474 503 431 3 x 10 ⁻²⁴
		1.551 930 033 9 x 10 ⁻¹⁹	$-3.659 405 308 7 \times 10^{-28}$
	C ₁₀ =	5.235 860 981 1 x 10 ⁻²²	
	C ₁₁ =	1.136 383 791 3 x 10 ⁻²⁴	
	C ₁₂ =	1.433 054 079 2 x 10 ⁻²⁷	
	C ₁₃ =	1.433 034 079 2 X 10	
		7 070 515 302 7 4 10 31	
	C ₁₄ =	7.979 515 392 7 x 10	W or EN Thormcoloment
Plat Temperature Range		7.979 515 392 7 x 10	O °C to 1000 °C
Temperature	inum (N	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C	0 °C to
Temperature	c _o =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C	0 °C to 1000 °C
Temperature	c _o = c ₁ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2	0 °C to 1000 °C 0.0 3.285 355 813 8 x 10 ⁻² 1.820 088 022 7 x 10 ⁻⁵
Temperature	c _o = c ₁ = c ₂ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 5	0 °C to 1000 °C 0.0 3.285 355 813 8 x 10 ⁻² 1.820 088 022 7 x 10 ⁻³ 6.758 360 162 4 x 10 ⁻⁶
Temperature	C _o = C ₁ = C ₂ = C ₃ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 7	0 °C to 1000 °C 0.0 3.285 355 813 8 x 10 ⁻² 1.820 088 022 7 x 10 ⁻⁵ 6.758 360 162 4 x 10 ⁻⁶ -3.608 745 197 5 x 10 ⁻¹⁰
Temperature	C _o = C ₁ = C ₂ = C ₃ = C ₄ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 3	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁶ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³
Temperature	C _O = C ₁ = C ₂ = C ₃ = C ₄ = C ₅ = C ₅	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 2 -4.882 249 460 9 x 10 11	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁶ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶
Temperature	C _O = C ₁ = C ₂ = C ₃ = C ₄ = C ₅ = C ₆ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 3 -4.882 249 460 9 x 10 3 -1.476 011 640 4 x 10 12	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁶ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶ -1.336 172 944 2 × 10 ⁻¹⁸
Temperature	C ₀ = C ₁ = C ₂ = C ₃ = C ₅ = C ₇ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 2 -4.882 249 460 9 x 10 2 -1.476 011 640 4 x 10 2 -3.036 321 473 1 x 10 2	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁶ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶ -1.336 172 944 2 × 10 ⁻¹⁸
Temperature	C _O = C ₁ = C ₂ = C ₃ = C ₄ = C ₆ = C ₇ = C ₉ = C	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 2 -4.882 249 460 9 x 10 11 2 -1.476 011 640 4 x 10 12 2 -3.036 321 473 1 x 10 14 2 -3.680 094 883 0 x 10 16	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁸ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶ -1.336 172 944 2 × 10 ⁻¹⁸ 2.227 815 139 1 × 10 ⁻²¹
Temperature	C _O = C ₁ = C ₂ = C ₃ = C ₄ = C ₅ = C ₇ = C ₉ = C	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 2 -4.882 249 460 9 x 10 3 -1.476 011 640 4 x 10 3 -3.036 321 473 1 x 10 3 -3.680 094 883 0 x 10 3 -3.733 196 978 5 x 10 3	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁶ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶ -1.336 172 944 2 × 10 ⁻¹⁶ 2.227 815 139 1 × 10 ⁻²¹ -1.474 503 431 3 × 10 ⁻²⁴
Temperature	C _O = C ₁ = C ₂ = C ₃ = C ₄ = C ₇ = C ₉ = C ₁₀ = C ₁₀ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 2 -4.882 249 460 9 x 10 1 -1.476 011 640 4 x 10 2 -3.036 321 473 1 x 10 1 -3.068 094 883 0 x 10 16 -2.733 196 978 5 x 10 18 -1.267 705 560 5 x 10 20	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁸ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶ -1.336 172 944 2 × 10 ⁻¹⁸ 2.227 815 139 1 × 10 ⁻²¹
Temperature	Co = C1 = C2 = C3 = C4 = C4 = C4 = C5 = C5 = C5 = C5 = C5	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 2 -4.882 249 460 9 x 10 2 -1.476 011 640 4 x 10 2 -3.036 321 473 1 x 10 2 -3.036 321	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁶ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶ -1.336 172 944 2 × 10 ⁻¹⁶ 2.227 815 139 1 × 10 ⁻²¹ -1.474 503 431 3 × 10 ⁻²⁴
Temperature	C _O = C ₁ = C ₂ = C ₃ = C ₄ = C ₇ = C ₉ = C ₁₀ = C ₁₀ =	7.979 515 392 7 x 10 TYPE T -270 °C to 0 °C 0.0 3.285 355 813 4 x 10 2 2.242 088 818 1 x 10 2 2.242 088 818 1 x 10 2 -1.642 329 422 6 x 10 2 -2.528 317 078 0 x 10 2 -4.882 249 460 9 x 10 1 -1.476 011 640 4 x 10 2 -3.036 321 473 1 x 10 1 -3.068 094 883 0 x 10 16 -2.733 196 978 5 x 10 18 -1.267 705 560 5 x 10 20	0 °C to 1000 °C 0.0 3.285 355 813 8 × 10 ⁻² 1.820 088 022 7 × 10 ⁻⁵ 6.758 360 162 4 × 10 ⁻⁶ -3.608 745 197 5 × 10 ⁻¹⁰ 6.605 244 362 3 × 10 ⁻¹³ -1.574 932 377 1 × 10 ⁻¹⁶ -1.336 172 944 2 × 10 ⁻¹⁶ 2.227 815 139 1 × 10 ⁻²¹ -1.474 503 431 3 × 10 ⁻²⁴

TABLE 8 Type B Thermocouple Temperature in Degrees Celsius (ITS-90)

<u>.</u>	ns at 0°	Junction	Reference		70lts Reference Junctions						MF in Millivolts						
	10	9	8	7	6	5	4	3	2	1	0	°C					
	··· · · · · · · · · · · · · · · · · ·				ILLIVOLTS	TAGE IN N	ECTRIC VOL	THERMOEL									
	-0.002 -0.003	-0.002 -0.003	-0.002 -0.003	-0.001 -0.002	-0.001 -0.002	-0.001 -0.002	-0.001 -0.002	-0.001 -0.002	-0.000 -0.002	-0.000 -0.002	0.000 -0.002	0 10					
	-0.002	-0.003	-0.002	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	20					
	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	30					
	0.002	0.002	0.002	0.001	0.001	0.001	0.000	0.000	-0.000	-0.000	-0.000	40					
	0.006	0.006	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.002	50					
	0.011	0.011	0.010	0.010	0.009	0.009	0.008	0.008	0.007	0.007	0.006	60					
	0.017	0.017	0.016	0.015	0.015	0.014	0.014	0.013	0.012	0.012	0.011	70					
	0.025	0.024	0.023	0.022	0.022	0.021	0.020	0.020	0.019	0.018	0.017	80					
	0.033	0.032	0.031	0.031	0.030	0.029	0.028	0.027	0.026	0.026	0.025	90					
	0.043	0.042	0.041	0.040	0.039	0.038	0.037	0.036	0.035	0.034	0.033	100					
	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.043	110					
	0.065	0.064	0.063	0.062	0.060	0.059	0.058	0.057	0.056	0.055	0.053 0.065	120					
	0.078	0.077	0.075	0.074	0.073	0.072	0.070	0.069	0.068	0.066		130					
	0.092	0.091	0.089	0.088	0.086	0.085	0.084	0.082	0.081	0.079	0.078	140					
	0.107	0.106	0.104	0.102	0.101	0.099	0.098	0.096	0.095	0.094	0.092	150					
	0.123	0.122	0.120	0.118	0.117	0.115	0.113	0.112	0.110	0.109	0.107	160					
	0.141	0.139	0.137	0.135	0.134	0.132	0.130	0.128	0.127	0.125	0.123	170					
	0.159	0.157	0.155	0.153	0.151	0.150	0.148	0.146	0.144	0.142	0.141	180					
	0.178	0.176	0.174	0.172	0.170	0.168	0.166	0.165	0.163	0.161	0.159	190					
	0.199	0.197	0.195	0.192	0.190	0.188	0.186	0.184	0.182	0.180	0.178	200					
	0.220	0.218	0.216	0.214	0.212	0.209	0.207	0.205	0.203	0.201	0.199	210					
	0.243	0.241	0.238	0.236	0.234	0.231	0.229	0.227	0.225	0.222	0.220	220					
	0.267	0.264	0.262	0.259	0.257	0.255	0.252	0.250	0.248	0.245	0.243	230					
	0.291	0.289	0.286	0.284	0.281	0.279	0.276	0.274	0.271	0.269	0.267	240					
	0.317	0.314	7 0.312	0.309	0.307	0.304	0.301	0.299	0.296	0.294	0.291	250					
	0.344	0.341	0.338	0.336	0.333	0.330	0.328	0.325	0.322	0.320	0.317	260					
	0.372	0.369	0.366	0.363	0.360	0.358	0.355	0.352	0.349	0.347	0.344	270					
	0.401	0.398	0.395	0.392	0.389	0.386	0.383	0.380	0.377	0.375	0.372	280					
	0.431	0.428	0.425	0.422	0.419	0.416	0.413	0.410	0.407	0.404	0.401	290					
	0.462	0.458	_0.455	50.452	0.449	0.446	0.443	0.440	0.437	0.434	0.431	300					
	0.494	0.490	0.487	0.484	0.481	0.478	0.474	0.471	0.468	0.465	0.462	310					
	0.527	0.523	0.520	0.517	0.513	0.510	0.507	0.503	0.500	0.497	0.494	320					
	0.561	0.557	0.554	0.550	0.547	0.544	0.540	0.537	0.533	0.530	0.527	330					
	0.596	0.592	0.589	0.585	0.582	0.578	0.575	0.571	0.568	0.564	0.561	340					
	0.632	0.628	0.625	0.621	0.617	0.614	0.610	0.607	0.603	0.599	0.596	350					
	0.669	0.665	0.662	0.658	0.654	0.650	0.647	0.643	0.639	0.636	0.632	360					
	0.707	0.703	0.700	0.696	0.692	0.688	0.684	0.680	0.677	0.673	0.669	370					
	0.746	0.742	0.738	0.735	0.731	0.727	0.723	0.719	0.715	0.711	0.707	380					
	0.787	0.782	0.778	0.774	0.770	0.766	0.762	0.758	0.754	0.750	0.746	390					
	0.828	0.824	0.819	0.815	0.811	0.807	0.803	0.799	0.795	0.791	0.787	400					
	0.870	0.866	0.861	0.857	0.853	0.849	0.844	0.840	0.836	0.832	0.828	410					
	0.913	0.909	0.904	0.900	0.896	0.891	0.887	0.883	0.878	0.874	0.870	420					
	0.957	0.953	0.948	0.944	0.939	0.935	0.930	0.926	0.922	0.917	0.913	430					
	1.002	0.997	0.993	0.988	0.984	0.979	0.975	0.970	0.966	0.961	0.957	440					
	1.048	1.043	1.039	1.034	1.030	1.025	1.020	1.016	1.011	1.007	1.002	450					
	1.095	1.090	1.086	1.081	1.076	1.071	1.067	1.062	1.057	1.053	1.048	460					
	1.143	1.138	1.133	1.129	1.124	1.119	1.114	1.109	1.105	1.100	1.095	470					
	1.192	1.187	1.182	1.177	1.172	1.167	1.163	1.158	1.153 1.202	1.148 1.197	1.143 1.192	480 490					
	1.242	1.237	1.232	1.227	1.222	1.217	1.212	1.207	1 202	(107							

TABLE 8 Type B Thermocouple Continued
Temperature in Degrees Celsius (ITS-90)

EMF in	Millivol	ts		теттрет	ature in Deg	grees ocisio	3 (110 30)		Reference	Junction	s at 0°C
°C	0	1	2	3	4	5	6	7	8	9	10
				THERMOELE	CTRIC VOL	TAGE IN M	ILLIVOLTS				
500	1.242	1.247	1.252	1.257	1.262	1.267	1.272	1.277	1.282	1.288	1.293
510	1.293	1.298	1.303	1.308	1.313	1.318	1.324	1.329	1.334	1.339	1.344
520	1.344	1.350	1.355	1.360	1.365	1.371	1.376	1.381	1.387	1.392	1.397
530	1.397	1.402	1.408	1.413	1.418	1.424	1.429	1.435	1.440 1.494	1.445 1.500	1.451 1.505
540	1.451	1.456	1.462	1.467	1.472	1.478	1.483	1.489	1.434	1.500	1.505
550	1.505	1.511	1.516	1.522	1.527	1.533	1.539	1.544	1.550	1.555	1.561
560	1.561	1.566	1.572	1.578	1.583	1.589	1.595	1.600	1.606	1.612	1.617
570	1.617	1.623	1.629	1.634	1.640	1.646	1.652	1.657	1.663	1.669	1.675
580	1.675	1.680	1.686	1.692	1.698	1.704	1.709	1.715	1.721	1.727	1.733
590	1.733	1.739	1.745	1.750	1.756	1.762	1.768	1.774	1.780	1.786	1.792
600	1.792	1.798	1.804	1.810	1.816	1.822	1.828	1.834	1.840	1.846	1.852
610	1.852	1.858	1.864	1.870	1.876	1.882	1.888	1.894	1.901	1.907	1.913
620	1.913	1.919	1.925	1.931	1.937	1.944	1.950	1.956	1.962	1.968	1.975
630	1.975	1.981	1.987	1.993	1.999	2.006	2.012	2.018	2.025	2.031	2.037
640	2.037	2.043	2.050	2.056	2.062	2.069	2.075	2.082	2.088	2.094	2.101
650	2.101	2.107	2.113	2.120	2.126	2.133	2.139	2.146	2.152	2.158	2.165
660	2.165	2.107	2.178	2.120	2.120	2.197	2.204	2.210	2.217	2.224	2.230
670	2.230	2.237	2.243	2.250	2.256	2.263	2.270	2.276	2.283	2.289	2.296
680	2.296	2.303	2.309	2.316	2.323	2.329	2.336	2.343	2.350	2.356	2.363
690	2.363	2.370	2.376	2.383	2.390	2.397	2.403	2.410	2.417	2.424	2.431
	0.404	0 437	0.444	2451	2-450	2 465	2 472	2.479	2 405	2 402	2.499
700	2.431	2.437	2.444	2.451	2.458	2.465	2.472	2.548	2.485 2.555	2.492 2.562	2.569
710	2.499	2.506	2.513	2.520	2.527	2.534 2.604	2.541	2.618	2.625	2.632	2.639
720	2.569	2.576	2.583	2.590	2.597	2.674	2.681	2.688	2.696	2.703	2.710
730 740	2.639 2.710	2.646 2.717	2.653 2.724	2.660 2.731	2.667	2.746	2.753		2.767	2.775	2.782
750	2.782	2.789	2.796	2.803	2.811	2.818	2.825	2.833	7 2.840	2.847	2.854
760	2.854	2.862	2.869	2.876	2.884	2.891	2.898	2.906	2.913	2.921	2.928
770	2.928	2.935	2.943	2.950	2.958	2.965	2.973	2.980	2.987	2.995	3.002
780	3.002	3.010	3.017	3.025	3.032	3.040	3.047	3.055	3.062	3.070	3.078
790	3.078	3.085	3.093	3.100	3.108	3.116	3.123	3.131	3.138	3.146	3.154
800	3.154	3.161	3.169	3.177	3.184	3.192	3.200	3.207	3.215	3.223	3.230
810	3.230	3.238	3.246	3.254	3.261	3.269	3.277	3.285	3.292	3.300	3.308
820	3.308	3.316	3.324	3.331	3.339	3.347	3.355	3.363	3.371	3.379	3.386
830	3.386	3.394	3.402	3.410	3.418	3.426	3.434	3.442	3.450	3.458	3.466
840	3.466	3.474	3.482	3.490	3.498	3.506	3.514	3.522	3.530	3.538	3.546
850	3.546	3.554	3.562	3.570	3.578	3.586	3.594	3.602	3.610	3.618	3.626
860	3.626	3.634	3.643	3.651	3.659	3.667	3.675	3.683	3.692	3.700	3.708
870	3.708	3.716	3.724	3.732	3.741	3.749	3.757	3.765	3.774	3.782	3.790
880	3.790	3.798	3.807	3.815	3.823	3.832	3.840	3.848	3.857	3.865	3.873
890	3.873	3.882	3.890	3.898	3.907	3.915	3.923	3.932	3.940	3.949	3.957
			.	2 2	2 22-	2 222	4 000	4 05 5	4 004	4 023	4 041
900 910	3.957 4.041	3.965 4.050	3.974 4.058	3.982 4.067	3.991 4.075	3.999 4.084	4.008 4.093	4.016 4.101	4.024 4.110	4.033 4.118	4.041 4.127
910	4.127	4.135	4.058	4.152	4.161	4.170	4.178	4.187	4.195	4.204	4.213
930	4.213	4.135	4.230	4.239	4.247	4.256	4.265	4.273	4.282	4.291	4.299
940	4.213	4.308	4.230	4.239	4.334	4.343	4.352	4.360	4.369	4.378	4.387
											4 485
950	4.387	4.396	4.404	4.413	4.422	4.431	4.440	4.448	4.457	4.466	4.475
960	4.475	4.484	4.493	4.501	4.510	4.519	4.528	4.537	4.546	4.555	4.564
970	4.564	4.573	4.582	4.591	4.599	4.608	4.617	4.626	4.635	4.644	4.653
980	4.653	4.662 4.753	4.671 4.762	4.680 4.771	4.689 4.780	4.698 4.789	4.707 4.798	4.716 4.807	4.725 4.816	4.734 4.825	4.743 4.834
990	4.743										