Standard Test Method for Gravimetric Determination of Nonvolatile Residue (NVR) in Environmentally Controlled Areas for Spacecraft [Metric]¹

This standard is issued under the fixed designation E 1235; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

 ϵ^1 Note—To bring Subcommittee E21.05's existing standards into compliance with Part H of ASTM's Form and Style Manual, the M designation has been editorially removed in July 2000.

1. Scope

- 1.1 This test method covers the determination of nonvolatile residue (NVR) fallout in environmentally controlled areas used for the assembly, testing, and processing of spacecraft.
- 1.2 The NVR of interest is that which is deposited on sampling plate surfaces at room temperature: it is left to the user to infer the relationship between the NVR found on the sampling plate surface and that found on any other surfaces.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- 1.4 The values stated in SI units are to be regarded as the standard.

2. Referenced Documents

2.1 ASTM Standards:

D 1193 Specification for Reagent Water²

- E 1234 Practice for Handling, Transporting, and Installing Nonvolatile Residue (NVR) Sample Plates Used in Environmentally Controlled Areas for Spacecraft³
- F 50 Practice for Continuous Sizing and Counting of Airborne Particles in Dust-Controlled Areas and Clean Rooms Using Instruments Capable of Detecting Single Sub-Micrometre and Larger Particles³
- 2.2 U.S. Federal Standard:⁴
- FED-STD-209 Airborne Particulate Cleanliness Classes in Cleanrooms and Clean Zones
- 2.3 U.S. Department of Defense Standards:⁴
- MIL-F-51068F Filters, Particulate (High-Efficiency Fire Resistant)
- MIL-P-27401 Propellant Pressurizing Agent, Nitrogen

¹ This test method is under the jurisdiction of ASTM Committee E-21 on Space Simulation and Applications of Space Technology and is the responsibility of Subcommittee E21.05 on Contamination.

Current edition approved Aug. 15, 1995. Published October 1995. Originally published as E 1235 - 88. Last previous edition E 1235 - 88 (1993).

- ² Annual Book of ASTM Standards, Vol 11.01.
- ³ Annual Book of ASTM Standards, Vol 15.03.
- ⁴ Available from Standardization Documents Order Desk, Bldg. 4, Section D, 700 Robbins Ave., Philadelphia, PA, 19111-5094, Attn.: NPODS.

- MIL-STD-1246 Product Cleanliness Levels and Contamination Control Program
- T.O. 00-25-203, 1 Dec. 1972, Change 15, 24 Oct. 1992, Contamination Control of Aerospace Facilities, U.S. Air Force
- 2.4 Institute of Environmental Sciences:⁵

IES-RP-CC001.3 HEPA and ULPA Filters

IES-RP-CC006.2 Testing Cleanrooms

IES-RP-CC016.1 The Rate of Deposition of Nonvolatile Residue in Cleanrooms

- 2.5 American National Standards Institute:
- ANSI/ASME B46.1-1985 Surface Texture (Surface Roughness, Waviness, and Lay)⁶
- 2.6 *Other*:

Industrial Ventilation, A Manual of Recommended Practice, Latest Edition⁷

3. Terminology

- 3.1 *Definitions:*
- 3.1.1 air cleanliness class (airborne particulate cleanliness class), n—the level of cleanliness specified by the maximum allowable number of particles per cubic meter (cubic foot) of air as defined in FED-STD-209.
- 3.1.2 *bumping*, *n*—uneven boiling of a liquid caused by irregular rapid escape of large bubbles of highly volatile components as the liquid mixture is heated or exposed to vacuum.
- 3.1.3 *clean area*, *n*—a general term that includes clean-rooms, controlled areas, good housekeeping areas, and other areas that have contamination control by physical design and specified operating procedures.
- 3.1.4 *clean zone*, *n*—a defined space in which the contamination is controlled to meet specified cleanliness levels.
- 3.1.4.1 *Discussion*—The clean zone may be open or enclosed and may or may not be located within a cleanroom.

⁵ Available from Institute of Environmental Sciences, 940 E. Northwest Highway, Mount Prospect, IL 60056.

⁶ Available from American Society of Mechanical Engineers, United Engineering Center, 345 E. 47th St., New York, NY 10017.

⁷ Available from Committee on Industrial Ventilation, PO Box 16153, Lansing, MI 48901, American Conference of Government and Industrial Hygienists.

- 3.1.5 *contaminant*, *n*—unwanted molecular and particulate matter that could affect or degrade the performance of the components upon which they reside.
 - 3.1.6 *contamination*, *n*—a process of contaminating.
- 3.1.7 controlled area, n—an environmentally controlled area, operated as a cleanroom, with two prefilter stages but without the final stage of HEPA (or better) filters used in cleanrooms.
- 3.1.7.1 *Discussion*—Only rough filters (50 to 60 % efficiency) and medium efficiency filters (80 to 85 % efficiency) are required for a controlled area. (See Air Force T.O. 00-25-203). The maximum allowable airborne particle concentrations are Class M7 (283 000) area for particles \geq 0.5 μ m and Class M6.5 (100 000) for particles \geq 5.0 μ m.
- 3.1.8 environmentally controlled areas, n—a general term that includes cleanrooms, controlled areas, good housekeeping areas, and other enclosures that are designed to provide an environment suitable for people or products.
- 3.1.8.1 *Discussion*—The environmental components that are controlled include, but are not be limited to, air purity, temperature, humidity, materials, garments, and personnel activities.
- 3.1.9 *facility* (*clean facility*), *n*—the total real property required to accomplish the cleanroom functions.
- 3.1.9.1 *Discussion*—In addition to the cleanroom and associated clean areas, this includes utility rooms, storage areas, offices, lockers, washrooms, and other areas that do not necessarily require precise environmental control.
- 3.1.10 *good housekeeping area*, *n*—an environmentally controlled area without quantitative cleanliness requirements but maintained in a visibly clean condition.
- 3.1.10.1 *Discussion*—Office, laboratory, and storage areas with air conditioning and janitorial service are typical of good housekeeping areas.
- 3.1.11 HEPA (high efficiency particulate air) filter, n—a filter for air with a removal efficiency in excess of 99.97 % for 0.3-µm particles.
- 3.1.11.1 *Discussion*—For this application, HEPA filters shall meet the requirements of MIL-F-51068F and paragraph 6.4 of this test method.
- 3.1.12 molecular contaminant—nonparticulate contaminant, n—nonparticulate matter.
- 3.1.12.1 *Discussion*—The molecular contaminant may be in a gaseous, liquid, or solid state. It may be uniformly or nonuniformly distributed or be in the form of droplets. Molecular contaminants account for most of the NVR.
- 3.1.13 *NVR* (*nonvolatile residue*), *n*—quantity of residual soluble, suspended, and particulate matter remaining after the controlled evaporation of a volatile liquid at a specified temperature.
- 3.1.13.1 *Discussion*—The liquid is usually filtered through a membrane filter, of a specified size, before evaporation to control the sizes of particles in the NVR. The process used to determine the NVR may affect the quantitative measurement. Process factors include filter size, solvent, and the evaporation temperature and atmosphere. For this reason, the process must be defined as it is in this test method.
 - 3.1.14 particle (particulate contaminant), n—a piece of

- matter in a solid or liquid (droplet) state with observable length, width, and thickness. The size of a particle is usually defined by its greatest dimension and is specified in micrometres
- 3.1.14.1 *Discussion*—Particle sizes are also defined by other parameters such as equivalent optical light scatter crossections, diameter of spheres with equivalent projected areas.

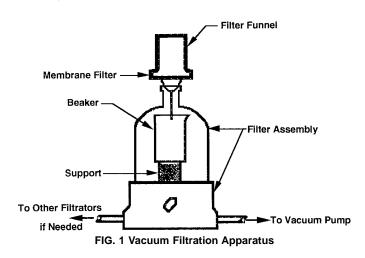
4. Summary of Test Method

- 4.1 A stainless steel plate is exposed within an environmentally controlled area for a known time. It is handled and transported in accordance with Practice E 1234.
- 4.2 The plate is rinsed with a high purity methylene chloride solvent.
- 4.3 The solvent is filtered into a beaker, transferred to a preweighed container, and evaporated at or near room temperature, with a final drying at 35°C for 30 min. Alternative evaporation methods are included.
- 4.4 The NVR sample is weighed after it has equilibrated to room temperature and humidity conditions.
- 4.5 A blank stainless steel NVR plate is concurrently treated identically to each group of samples to determine solvent background and handling effects.
- 4.6 A reagent blank for each group of samples is determined.
- 4.7 Each NVR sample, 0.5 mg or greater, is retained for organic analysis by infrared spectrometry, or other techniques, to identify contaminants.

5. Significance and Use

- 5.1 The NVR determined by this test method is that amount that can reasonably be expected to exist on hardware exposed in environmentally controlled areas.
- 5.2 The evaporation of the solvent at or near room temperature is to quantify the NVR that exists at room temperature.
- 5.3 Numerous other methods are being used to determine NVR. This test method is not intended to replace methods used for other applications.

6. Apparatus and Materials


- 6.1 Analytical Microbalance, semimicro 5 place, with 30 g or greater tare, no greater than 0.01-mg readability, and ± 0.01 -mg precision.⁸
- 6.2 HEPA Filtered, Class M3.5 (Class 100), or better environment, as defined in FED-STD-209, unidirectional air flow, clean work station.
- 6.3 HEPA Filtered, Class M3.5 (Class 100), or better environment, as defined in FED-STD-209, unidirectional air flow, exhausting work station, with 100 % exhaust for handling solvents.
- Note 1—The exhausting work station is recommended to prevent solvent vapors from entering the laboratory area. (See Industrial Ventilation, a Manual of Recommended Practice.)
- Note 2—Verify that the airborne particle concentrations in the work stations are Class M3.5 (Class 100), or better, per FED-STD-209, when tested in accordance with Practice F 50.

⁸ Sartorius Model R180D, or equivalent.

Note 3—Verify NVR levels in the work stations are acceptable using the procedures in this standard.

- 6.4 HEPA Filters—All HEPA filters shall be constructed of low outgassing, corrosion resistant, and fire-resistant materials such as Grade 1 in IES-RP-CC001.3 and MIL-F-51068F. Types IIA and IID, MIL-F-51068F, with stainless steel or aluminum frames, should be considered. The filters shall not be tested with DOP (dioctylphthalate) or other liquid aerosols. Ambient air and solid aerosol test methods are acceptable alternatives to the DOP test.
- 6.5 *Vacuum Filtration System*, consisting of a 47-mm-diameter membrane filter funnel⁹ and vacuum pump that will provide a pressure of 30 kPa (250 torr) (a vacuum of 20 in. Hg). See Fig. 1.
- 6.6 Solvent Resistant Filter, 47-mm diameter, ¹⁰ 0.2-µm pore size (nominal) fluorocarbon.
- 6.7 Tweezers or Hemostat, stainless steel or coated with TFE-fluorocarbon.
- 6.8 Beakers, low-form, glass, 250 mL, etched with an identification number.
- 6.9 Evaporating Dish (Petri Dish), borosilicate glass, approximately 15 g in mass, 60-mm diameter \times 12 mm deep, and etched with an identification number.
 - 6.10 Liquid Laboratory Detergent.
- 6.11 *Gloves*, solvent compatible and resistant.¹¹ (Warning—Gloves shall be used to protect the hands from accidental spills of the NVR solvent and minimize contamination of exposed samples. Gloves shall be selected to meet local safety and contamination control requirements.)
- 6.12 *NVR Plate*, Type 316 corrosion resistant steel with an area of approximately 0.1 m² (1 ft²). The plate shown in Fig. 2 has been found to be satisfactory. The finish of the sampling surface shall be 0.80 μ m (32 μ in.) or better per ANSI/ASME B46.1. The plate shall be electropolished and engraved with an identification number.

¹¹ Pioneer green nitrile gloves, Catalog No. A10-1, have been found to be satisfactory.

- 6.13 *NVR Plate Cover*, Type 316 corrosion resistant steel. The cover shown in Fig. 3 has been found to be satisfactory. The finish shall be 0.80 μ m (32 μ in.) or better per ANSI/ASME B46.1. The cover shall be electropolished and engraved with an identification number.
- 6.14 *Oil-Free Aluminum Foil*¹², to cover the NVR plate if the cover (6.12) is not used.
- Note 4—The hard cover (6.13) is preferred for ease of handling and possible tearing of the foil resulting in contamination of the NVR plate.
- 6.15 *Noncontaminating Nylon Bag* to enclose each covered NVR plate. ¹³
- 6.15.1 Bags shall not contain or generate molecular or particulate matter that could contaminate the NVR plate or NVR plate carrier.
- 6.16 *NVR Plate Carrier*—The sealable, aluminum carrier shown in Fig. 4 has been found to be satisfactory (see Practice E 1234).
- 6.17 Noncontaminating Nylon Bag¹³ to protect the NVR plate carrier in 6.15. Plastic film material shall meet the safety and outgassing requirements for the spacecraft and spacecraft processing facility. (See Note 4.)
 - 6.18 Drying Oven:
- 6.18.1 The drying oven shall not produce molecular and particulate contaminants and shall not be used for other operations that could contaminate samples.
- 6.19 *Plate Stand*—The plate stand shown in Fig. 5 has been found useful for holding the NVR plate during solvent flushing.
- 6.20 Temperature and Relative Humidity Monitors, as required, to monitor processes that are sensitive to these environments.
- 6.21 Vacuum oven evaporation system (Method 2), consisting of a vacuum oven, a two-stage vacuum pump, and vacuum gage. The vacuum oven shall be controllable to within $\pm 5^{\circ}$ C over an operating range of 25 to 100°C. Fig. 6 shows a typical vacuum oven evaporation system. Two solvent traps cooled with isopropanol/dry ice baths, collect the solvent vapors to prevent release into the atmosphere, protect the vacuum pump, and allow recycling of the solvent.
- 6.22 Automatic, controlled environment (nitrogen atmosphere) evaporator capable of controlling to a temperature of 37°C¹⁴ (Method 3). Fig. 7 shows a typical arrangement.
- 6.23 600-mL (450-mL capacity) graduated, borosilicate glass tubes, 75-mm diameter, 150 mm high with 2-mL stems, to fit in the temperature controlled block in the evaporator¹⁵ (Method 3).

7. Reagents

7.1 *Purity of Reagents*—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that

⁹ Gelman filter funnel P/N 4012/Fisher filtrator assembly Cat. No. 09-788 and Millipore Cat. No. XX1504700 filtration assembly have been found to be satisfactory. Other suitable filtration apparatus may be used.

¹⁰ Millipore Corp. Fluoropore filter Cat. No. FGLP 04700, and Gelman Sciences, Inc. Prod. 66143 PTFE have been found to be satisfactory. Other equivalent solvent resistant filters may be used.

¹² Fed Spec. Food Service Grade aluminum foil, oil free, Federal Stock No. 8135-00-724-0551 has been found to be satisfactory.

¹³ Nylon 6 (heat-sealable Capran 980 from Allied Chemical) has been found to be satisfactory.

 $^{^{14}\,}RapidVap$ $N_2,$ Model 79100, evaporation system, with No. 79065 sample block, Labconco Corp., 8811 Prospect Ave., Kansas City, MO 641132-2696 has been found to be satisfactory.

¹⁵ Catalog No. 79138-00 borosilicate glass tubes (6) with 2-mL stems to fit the RapidVap Model 79100 has been found to be satisfactory.

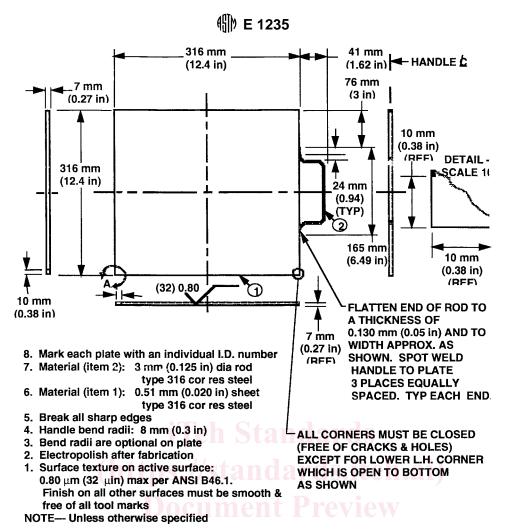
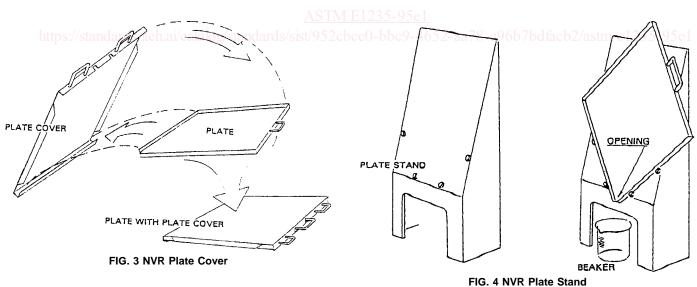



FIG. 2 NVR Collector Plate

all reagents shall conform to the specifications of the Commit-

tee on Analytical reagents of the American Chemical Society,

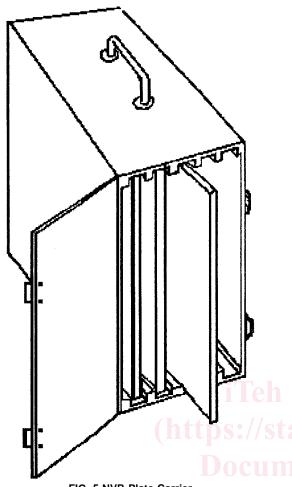


FIG. 5 NVR Plate Carrier

when such specifications are available.¹⁶

- 7.2 Purity of Water—Deionized, organic-free water such as reagent water, Type II in accordance with Specification D 1193 with a minimum resistivity of 1.0 $M\Omega$ -cm.
 - 7.3 Acetone, reagent grade.
 - 7.4 Methanol Absolute, reagent grade.
- 7.5 Nitrogen, MIL-P-27401, Type I (gaseous), Grade B or better.
- 7.6 *NVR Solvent* consisting of HPLC (high-purity liquid chromatography) grade methylene chloride (dichloromethane). The solvent shall be certified to contain <1-ppm (<1-mg/L) NVR using the procedure in Section 10.

Note 5—Methylene chloride is toxic¹⁷ and is being phased out for many applications. Replacement solvents are under study and will be substituted when available. Use methylene chloride only in the exhausting work station (6.3).

8. Cleaning of Equipment

8.1 All operations, except weighings, shall be performed in

- a unidirectional air flow, clean work station {Class M3.5 (Class 100) environment as defined in FED-STD-209} or an equivalent cleanroom or clean zone.
- 8.2 Clean the glassware, tools, plate cover, and NVR plates by washing twice with a strong liquid detergent in water followed by a deionized water rinse. Then rinse the object with acetone, then with methanol, and finally with the NVR solvent described in 7.6. Allow glassware to air dry in the clean work station. Certify cleanliness by analysis.
- 8.3 Verify that the carrier is visually clean. If cleaning is required, clean to Level 100A per MIL-STD-1246.
- 8.4 Cover the beakers and other equipment in oil free aluminum foil (6.14). Store until required.
- 8.5 Certify the cleanliness of the NVR plate by performing an NVR measurement in accordance with Section 10 using 60 mL of NVR solvent. Note the results in the certification tag (Fig. 8). The measured NVR shall be no more than 0.1 mg.
- 8.6 An NVR plate may also be considered as being certified clean if the previous sampling measurement is within 0.1 mg of the sample blank and the reagent blank is less than 0.05 mg (this is equivalent to a solvent NVR background of approximately 1 mg/L).
- 8.7 Install the NVR plate cover (6.13) on the NVR plate or enclose in the oil-free aluminum foil (6.14).
- 8.8 Enclose the covered NVR plate in a noncontaminating nylon bag (6.15) and install in the carrier immediately to avoid contamination. Place the lid on the carrier and fasten securely.
- 8.8.1 A certification decal or tag (Fig. 8) shall be packaged with each NVR plate.
 - 8.9 Seal the carrier in a noncontaminating bag.
- 8.9.1 The noncontaminating nylon bag (6.17) shall be used when the carrier is to be removed from a controlled environment for transport.
- 8.10 Affix the proper quality control decal or tag (Fig. 8) to the carrier in accordance with Practice E 1234 and local requirements.
- 8.11 Prepare a paper "traveler" (Fig. 5 in Practice E 1234) in accordance with Practice E 1234.
- 8.12 Attach the paper "traveler" to the outer bag or container.
- 8.13 Store the carrier inside the noncontaminating nylon bag in a good housekeeping area until required for use. Reclean the NVR plates in accordance with 8.2 for acceptability after six months or as determined by local conditions.

Note 6—An acceptable storage time for the NVR plates before requiring recertification should be determined because local conditions can affect the process.

9. Postexposure Handling

- 9.1 Storage of the carrier, following the return of the exposed samples, shall be in a good housekeeping area, Class M 7 (Class 283 000), as defined in FED-STD-209, or controlled area.
- 9.2 Remove the NVR plate carrier from the outer plastic bag immediately before placing the carrier into a Class M 6.5 (Class 100) or better unidirectional air flow work station.
 - 9.3 Clean the outside of the NVR plate carrier if required.
- 9.4 Remove the NVR sample plates individually, including the blank, and perform a visual inspection of each. Record

¹⁶ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.

¹⁷ Material Safety Data Sheet No. 310, Genium Publishing Corp., 1145 Catalyn St., Schenectady, NY 12303.

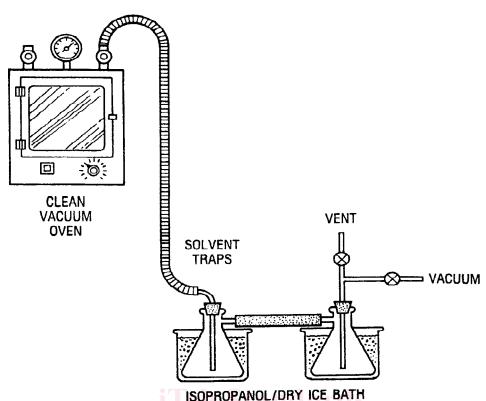


FIG. 6 Vacuum Oven Evaporation System

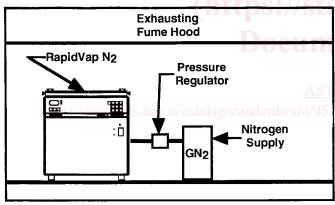


FIG. 7 Automatic Evaporator System

observations on the "traveler" form (see Fig. 5 of Practice E 1234M) accompanying the NVR plate carrier. Replace plates in the carrier.

Note 7—Large particles of organic materials on the plate will affect the NVR measurements if the NVR solvent extracts soluble matter from the particles. Large particle fallout is more severe on horizontally mounted than on vertically mounted plates. To reduce possible errors, the plates may be flushed with clean, dry nitrogen. If a nitrogen flush is used, all plates, including the blank, shall be flushed.

10. NVR Solvent Certification

- 10.1 Procure the NVR solvent in accordance with 7.6.
- 10.2 The NVR of each bottle shall be determined upon opening in accordance with 10.3.
- 10.3 All operations, except weighings, shall be performed in a unidirectional air flow, clean work station {Class M3.5 (Class

Date Sampled
Quantity:
Quantity: (1) mg/ Serial No.:

- (1) The quantity of NVR can be "mg/L", "mg/0.1 m²", etc.
- (2) The item can be "NVR plate", "plate carrier", "NVR solvent", etc. FIG. 8 Typical Certification Tag

100) environment as defined in FED-STD-209} or an equivalent cleanroom or clean zone.

- 10.4 Solvent operations shall be performed in the exhausting work station (6.3), which is a Class M3.5 (Class 100) or better environment as defined in FED-STD-209.
- 10.4.1 Methylene chloride can be toxic. Handle with caution and observe appropriate precautions.
- 10.5 Document all appropriate information using the NVR Analysis Data and Summary Sheet, Fig. 5 and Fig. 6.
- 10.6 Preweigh the certified borosilicate glass petri dish (6.9) using the microbalance (6.1) to the nearest 0.01 mg. Record the mass.
- 10.6.1 The relative humidity shall not vary by more than ± 10 % and the air temperature by more than ± 3 °C during all weighings. The air velocities during weighings shall not be large enough to disturb the balance.
- 10.7 Determine the NVR in 100 mL of solvent by one of the following methods.