

Edition 1.0 2020-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communication devices, 30 MHz to 6 GHz – Part 4: General requirements for using the finite element method for SAR calculations

<u>IEC/IEEE 62704-4:2020</u>

https://standards.iteh.ai/catalog/standards/sist/070bb511-f88£486d-8852-Détermination du débit d'absorption spécifique (DAS) maximal moyenné dans le corps humain, produit par les dispositifs de communications sans fil, 30 MHz à 6 GHz –

Partie 4: Exigences générales d'utilisation de la méthode des éléments finis pour les calculs du DAS

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland Copyright © 2020 IEEE

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing being secured. Requests for permission to reproduce should be addressed to either IEC at the address below or IEC's member National Committee in the country of the requester or from IEEE.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue New York, NY 10016-5997 United States of America stds.ipr@ieee.org www.ieee.org

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published IEC Glossary details all new publications released. Available online and 67 000 electrot once a month by email. French extracte

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

ons, Just Published **IEC Glossary - std.iec.ch/glossary** valiable online and 67 000 electrotechnical terminology entries in English and French extracted from the Terms and definitions clause of IEC publications issued between 2002 and 2015. Some

IEC Customer Service Centre - webstore.iec.ch/csc/IEEE 627entries/have been collected from earlier publications of IEC If you wish to give us your feedback on this publication or dard Ci370770.86 and CISPR6d-8852need further assistance, please contact the Customer Service - 62704-4-2020 Centre: sales@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et définitions des publications IEC parues entre 2002 et 2015. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Edition 1.0 2020-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communication devices, 30 MHz to 6 GHz – Part 4: General requirements for using the finite element method for SAR calculations

https://standards.iteh.ai/catalog/standards/sist/070bb511-f88f-486d-8852-

Détermination du débit d'absorption spécifique (DAS) maximal moyenné dans le corps humain, produit par les dispositifs de communications sans fil, 30 MHz à 6 GHz –

Partie 4: Exigences générales d'utilisation de la méthode des éléments finis pour les calculs du DAS

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 17.220.20

ISBN 978-2-8322-8535-0

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWO	RD	5			
IN	TRODU	ICTION	7			
1	Scop	e	8			
2	Normative references					
3	Terms and definitions					
4	Abbr	eviated terms	9			
5	Finite	e element method – basic description	9			
6	SAR	calculation and averaging	10			
Ũ	6 1	6.1 General				
	6.2	SAR averaging	. 10			
	6.2.1	General	. 11			
	6.2.2	Evaluation of psSAR with an FEM mesh	.11			
	6.3	Power scaling	. 12			
7	Cons	iderations for the uncertainty evaluation	.12			
	7.1	General	. 12			
	7.2	Uncertainty due to device positioning, mesh density, and simulation				
		parameters	. 13			
	7.2.1	General T.eS.T.A.NID.A.R.D.D.R.F.VIIV.	. 13			
	7.2.2	Mesh convergence	. 14			
	7.2.3	Open boundary conditions ar as a strain and a strain and a strain and a strain and a strain a	.14			
	7.2.4	Power budget	. 14			
	7.2.5	Convergence of psSAR sampling/04-4/2020	.14			
	7.2.6	Dielectric parameters of the phantom or body model	.15			
	7.3	Uncertainty and validation of the developed numerical model of the DUT	.15			
	7.3.1		.15			
	7.3.2	Uncertainty of the DUT model ($d \ge \lambda/2$ or $d \ge 200$ mm)	.16			
	7.3.3	Uncertainty of the DUT model ($d < \lambda/2$ and $d < 200$ mm)	.17			
	7.3.4	Phantom uncertainty ($a < \lambda/2$ and $a < 200$ mm)	.18			
	7.3.5	Model validation	10			
Q	7.4 Code		20			
0	0 4	Canada	. 20			
	0.1	Betienele	.20			
	0.1.1 8 1 2	Code performance verification	.20			
	0.1.2 8 1 3	Canonical benchmarks	. Z 1 21			
	8.2	Code performance verification	.21			
	821	Propagation in a rectangular waveguide	21			
	8.2.2	Planar dielectric boundaries	.26			
	8.2.3	Open boundary conditions	.28			
	8.3	Weak patch test	.28			
	8.3.1	General	.28			
	8.3.2	Free-space weak patch test	.29			
	8.3.3	Dielectric-layer weak patch test	. 33			
	8.4	Verification of the psSAR calculation	.36			
	8.5	Canonical benchmarks	. 36			
	8.5.1	Mie sphere	. 36			

8.5.2	Generic dipole	37
8.5.3	Microstrip terminated with open boundary conditions	38
8.5.4	psSAR calculation SAM phantom / generic phone	39
8.5.5	Setup for system performance check	39
Annex A (informative) Fundamentals of the finite element method	41
A.1	General	41
A.2	Model boundary value problem	41
A.3	Galerkin weak form	42 12
A.4 A 5	Considerations for using FFM	42
Annex B (informative) File format for field and SAR data	44
Annex C(problems.	informative) Analytical solution for error calculation in weak patch-test	45
C.1	Generation of control mesh and FEM field values	45
C.2	Free-space weak patch test	45
C.3	Dielectric-layer weak patch test	45
Bibliograp	hy	48
Figure 1 – Figure 2 – ^E 11, ^E 12	- Waveguide filled half with free-space (green) and half with dielectric (blue) - Aligned rectangular waveguide and locations of the sample points E_{01} , E_{10} , and E_{21} at which the E_x components are recorded	24 25
Figure 3 -	Weak patch test arrangement: a free-space cube with edge length L	29
Figure 4 -	- Dielectric-laver weak natch test arrangement()	33
Figure 5 -	- Geometry bill fundaride the pilot alog / standards/sist/070bb511-f88f-486d-8852-	38
Figure 6 -	fldeflac31dc/iec-ieec-62704-4-2020	40
Table 1 – rendering	Budget of the uncertainty contributions of the numerical algorithm and of the of the test-setup or simulation-setup	13
Table 2 –	Budget of the uncertainty of the developed model of the DUT	17
Table 3 –	Overall assessment uncertainty budget for the numerical simulation results	20
Table 4 – reported f increasing	Results of the evaluation of the numerical dispersion characteristics to be or each mesh axis and each orientation of the waveguide for at least three numbers of DoF	25
Table 5 – reported;	Results of the evaluation of the numerical reflection coefficient to be frequency range is indicated for each value to be reported	27
Table 6 –	Guiding parameters for coarse and fine mesh generation for the weak patch test	30
Table 7 – weak pato	Results of the evaluation of the error measures on the control mesh for the https://www.commonstance.com/commonstance.com/commonstance.com/commonstance.com/commonstance.com/commonstance.com/commonstance.com/com/com/com/com/com/com/com/com/com/	32
Table 8 – weak pato	Results of the evaluation of the error measures on the control mesh for the the test for the second lowest order	32
Table 9 – weak pato	Results of the evaluation of the error measures on the control mesh for the h test for the third lowest order	33
Table 10 - layered w	 Guiding parameters for coarse and fine mesh generation for the dielectric- eak patch test 	34
Table 11 - dielectric-	 Results of the evaluation of error measures on the control mesh for the layered weak patch test for the lowest order 	35

Table 12 – Results of the evaluation of error measures on the control mesh for the dielectric-layered weak patch test for the second lowest order	35
Table 13 – Results of the evaluation of error measures on the control mesh for thedielectric-layered weak patch test for the third lowest order	36
Table 14 – Results of the SAR evaluation of the Mie sphere	37
Table 15 – Results of the dipole evaluation	38
Table 16 – Results of the microstrip evaluation	39
Table 17 – 1 g and 10 g psSAR for the SAM phantom exposed to the generic phone for 1 W accepted power as specified in [19]	39
Table 18 – Dielectric parameters of the setup (Table 1 of [21])	40
Table 19 – Mechanical parameters of the setup (Tables 1 and 2 of [21])	40
Table 20 – 1 g and 10 g psSAR normalized to 1 W accepted power and feed-point impedance (Table 3 and Table 4 of [21])	40

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC/IEEE 62704-4:2020 https://standards.iteh.ai/catalog/standards/sist/070bb511-f88f-486d-8852f1deffac31dc/iec-ieee-62704-4-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DETERMINING THE PEAK SPATIAL-AVERAGE SPECIFIC ABSORPTION RATE (SAR) IN THE HUMAN BODY FROM WIRELESS COMMUNICATION DEVICES, 30 MHZ TO 6 GHZ –

Part 4: General requirements for using the finite element method for SAR calculations

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the IEEE Standards Association (IEEE SA) Standards Board. IEEE develops its standards through a consensus development process, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary. IEEE documents are made available for use subject to important notices and legal disclaimers (see http://standards.ieee.org/IPR/disclaimers.html for more

<u>IEC/IEEE 62704-4:2020</u>

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two organizations.

- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE standards document is given by the IEEE Standards Association (IEEE-SA) Standards Board.
- 3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC/IEEE Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications (including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees, or volunteers of IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board, for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/IEEE Publication or any other IEC of IEEE Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC/IEEE Publication may require use of material covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

International Standard IEC/IEEE 62704-4 has been prepared by IEC technical committee TC 106: Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure, in cooperation with International Committee on Electromagnetic Safety of the IEEE Standards Association, under the IEC/IEEE Dual Logo Agreement.

This publication is published as an IEC/IEEE Dual Logo standard.

The text of this standard is based on the following IEC documents:

FDIS	Report on voting
106/515/FDIS	106/521/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

(standards.iteh.ai)

A list of all parts in the IEC/IEEE 62704 series, published under the general title *Determining* the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz, can be found on the IEC website.

f1deffac31dc/iec-ieee-62704-4-2020

The IEC technical committee and IEEE technical committee have decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC/IEEE 62704-4:2020 © IEC/IEEE 2020 - 7 -

INTRODUCTION

Finite element methods have reached a level of maturity that allows their application in specific absorption rate (SAR) assessments of professional-use and consumer-use wireless communication devices. In the recent past, SAR compliance assessments for small transmitters were performed almost exclusively using measurements. Some wireless communication devices are used in situations where experimental SAR assessment is extremely complex or not possible at all. National regulatory bodies (e.g. US Federal Communications Commission) encourage the development of consensus standards and encouraged the establishment of the ICES Technical Committee 34 Subcommittee 2. The benefits to the users and the regulators include standardized and accepted protocols, verification and validation techniques, benchmark data, reporting format and means for estimating the overall assessment uncertainty in order to produce valid, repeatable, and reproducible data.

The purpose of this document is to specify numerical techniques and models to determine peak spatial-average specific absorption rates (SAR). SAR will be determined by applying finite element method simulations of the electromagnetic field conditions produced by wireless communication devices in models of the human anatomy. Intended users of this document are (but are not limited to) wireless communication device manufacturers, service providers for wireless communication that are required to certify that their products comply with the applicable SAR limits, and government agencies.

Several methods described in this document are based on techniques specified in IEC/IEEE 62704-1:2017 Ceh STANDARD PREVIEW

(standards.iteh.ai)

IEC/IEEE 62704-4:2020 https://standards.iteh.ai/catalog/standards/sist/070bb511-f88f-486d-8852fl deffac31dc/iec-ieee-62704-4-2020

DETERMINING THE PEAK SPATIAL-AVERAGE SPECIFIC ABSORPTION RATE (SAR) IN THE HUMAN BODY FROM WIRELESS COMMUNICATION DEVICES, 30 MHZ TO 6 GHZ -

Part 4: General requirements for using the finite element method for SAR calculations

1 Scope

This part of IEC/IEEE 62704 describes the concepts, techniques, and limitations of the finite element method (FEM) and specifies models and procedures for verification, validation and uncertainty assessment for the FEM when used for determining the peak spatial-average specific absorption rate (psSAR) in phantoms or anatomical models. It recommends and provides guidance on the modelling of wireless communication devices, and provides benchmark data for simulating the SAR in such phantoms or models.

This document does not recommend specific SAR limits because these are found elsewhere (e.g. in IEEE Std C95.1 [1]¹ or in the guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [2]).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC/IEEE 62704-4:2020

https://standards.iteh.ai/catalog/standards/sist/070bb511-f88f-486d-8852-IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)

IEC/IEEE 62704-1:2017. Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz – Part 1: General requirements for using the finite-difference time-domain (FDTD) method for SAR calculations

IEEE Std 1528, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques

Terms and definitions 3

For the purposes of this document, the following terms and definitions apply.

ISO, IEC, and IEEE maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp
- IEEE Dictionary Online: available at http://dictionary.ieee.org

¹ Numbers in square brackets refer to the Bibliography.

3.1

mesh

<finite-difference time-domain method> discrete representation of the simulation model as a set of voxels in a regular three-dimensional Cartesian arrangement

Note 1 to entry: In the scientific literature, the mesh is often referred to as a "grid."

[SOURCE: IEC/IEEE 62704-1:2017, 3.21, modified - The specific context "<finite-difference time-domain method>" has been added.]

3.2

mesh

<finite element method> discrete representation of the simulation model as a set of tetrahedral elements in an irregularly three-dimensional arrangement

Note 1 to entry: In the scientific literature, the mesh is often referred to as a "grid."

3.3

element

smallest three-dimensional part of a mesh

EXAMPLE A voxel or a tetrahedron.

3.4

subregion

spatially limited three-dimensional region within a computational domain

3.5

(standards.iteh.ai)

accepted power

power delivered to a load by a source<u>IEC/IEEE 62704-4:2020</u>

https://standards.iteh.ai/catalog/standards/sist/070bb511-f88f-486d-8852fldeffac31dc/iec-ieee-62704-4-2020

4 Abbreviated terms

- ASCII American Standard Code for Information Interchange
- BVP **Boundary Value Problem**
- DoF **Degrees of Freedom**
- DUT **Device Under Test**
- FDTD Finite-Difference Time-Domain
- FEM **Finite Element Method**
- PDE Partial Differential Equation
- PEC Perfect Electric Conductor
- PMC Perfect Magnetic Conductor
- psSAR peak spatial-average Specific Absorption Rate
- SAR Specific Absorption Rate
- SL International System of Units
- TVFE **Tangential Vector Finite Elements**

5 Finite element method – basic description

This document describes applications of the finite element method (FEM) to calculate the specific absorption rate (SAR). Reasons for using FEM include its proven track record in a broad range of electromagnetic applications, and its ability to use an unstructured, usually tetrahedral, mesh that conforms to complicated geometries, employing arbitrarily small elements where needed and larger elements elsewhere.

Multiple ways exist to solve Maxwell's equations with FEM. Implementations can be based on field quantities or on potential quantities, and may be formulated using either the weighted residual method or the variational method [3], [4]. The weighted residual method starts directly from the partial differential equation (PDE) of the boundary value problem, whereas the variational method starts from the variational representation of the boundary value problem. All implementations have the following in common:

- a) They are based on PDEs, not on integral equations. The PDEs are derived from Maxwell's equations augmented by proper boundary conditions in order to frame a well-defined boundary value problem on a finite computational domain.
- b) The size of the computational domain is finite. Radiation towards infinity is implemented through an open boundary condition on its outer boundaries. Radiated fields outside the domain can be computed by integrating over a boundary that encloses the radiating structure.
- c) After applying excitations and boundary conditions and discretizing the computational domain into a mesh, the derived PDE is transformed into a matrix equation in which the matrix is large, sparse, and banded. "Large" is a consequence of having a large number of unknowns, several per element on a large mesh. "Sparse" and "banded" are consequences of the fact that all interactions are formulated as local interactions.
- d) In the limit of infinitesimally small elements, the solution approaches the exact solution of the PDE.

Annex A contains more information on FEM, along with references to literature and a discussion of its limitations. Clause 8 describes a set of tests is described that shall be used to determine whether a particular implementation of FEM is correct and sufficiently accurate to be used for SAR calculations. (standards.iteh.ai)

This document refers to Nédélec elements of the first kind, which are polynomially exact up to order 0 ($H_0(curl)$ or edge elements) as lowest order 2 ($H_0(curl)$ or edge elements) as second lowest order and up to order 2 ($H_2(curl)$) elements) as third to order 2 ($H_2(curl)$) elements) for the second lowest order [5]. If an implementation of the FEM is applied with one of these orders, the respective parts of the code verification shall be executed with this order.

6 SAR calculation and averaging

6.1 General

The local specific absorption rate (SAR) in a location in tissue is given in Equation (1):

$$SAR = \frac{\sigma E^2}{2\rho} \tag{1}$$

where ρ is the mass density of the tissue, *E* is the magnitude of the electric field vector, and σ is the electric conductivity. Since the local SAR can vary strongly with position, the quantity of interest is often the peak spatial-average SAR. Contemporary safety standards and guidelines specify time-averaged whole-body-averaged SAR limits and psSAR limits, neither of which should be exceeded. The spatial-average SAR is averaged over a specified mass with a specified volume, e.g. 1 g or 10 g of tissue in the shape of a cube [1], [2].

NOTE Cubical averaging volumes are applied in all existing standards for the measurement of psSAR, and are also recommended by [1], [2] and [6]. Other averaging volumes have been proposed, e.g. in [2], and might be included in future revisions of this document.

IEC/IEEE 62704-4:2020 © IEC/IEEE 2020 - 11 -

6.2 SAR averaging

6.2.1 General

The objective of the methods to evaluate the psSAR described here is to yield results that correspond to the methods and definitions of Clause 6 of IEC/IEEE 62704-1:2017, which describes how to compute psSAR on a rectangular mesh. The same algorithm shall be applied to calculate psSAR for FEM simulations within this document. Since the algorithm of Clause 6 of IEC/IEEE 62704-1:2017 is specified on rectilinear meshes with varying mesh step, the vector components of the electric fields, the conductivity, and the mass density of the finite element mesh shall be resampled on a Cartesian mesh. The resampling is carried out with increasingly fine mesh steps until convergence of the dissipated power is reached in the subregions where local SAR maxima are located. In order to reduce the computation time for the iterative resampling and SAR averaging, subregions with local SAR maxima are identified in a pre-scan. In these subregions, the psSAR is then calculated according to Clause 6 of IEC/IEEE 62704-1:2017. The maximum psSAR of all subregions shall be reported as the psSAR maximum together with its interpolation uncertainty. The details of the steps of the algorithm are provided in 6.2.2.

6.2.2 Evaluation of psSAR with an FEM mesh

6.2.2.1 General

The following steps shall be carried out to resample the geometry and the power density in a set of subregions around local SAR maxima for the application of the SAR averaging algorithm of IEC/IEEE 62704-12017 ANDARD PREVIEW

- a) Specify an orientation of a rectilinear mesh relative to the coordinate system of the FEM mesh considering the relevant features of the model; this orientation shall align with surface planes or conducting planes of the phantom or of the DUT.
- b) Iteratively resample the geometry and local SAR distribution in the rectilinear mesh and evaluate psSAR at each iteration until convergence is achieved (see 6.2.2.2).
- c) Report the highest psSAR of all subregions together with its interpolation uncertainty.

6.2.2.2 Calculation of the psSAR on an iteratively refined rectangular mesh

The psSAR shall be evaluated on a rectilinear mesh that encompasses a subregion around a local SAR maximum with individual equidistant mesh steps for each axis. Each mesh cell is assigned the local distribution of the dissipated power, the conductivity, and the mass density.

- a) The mass density for each mesh cell shall be assigned by nearest-neighbour interpolation of the mass density distribution of the tetrahedral mesh.
- b) The conductivity for each mesh cell shall be assigned by nearest-neighbour interpolation of the mass density distribution of the tetrahedral mesh.
- c) In the mesh cells that have a mass density different from zero, the dissipated power density is calculated by evaluating the electric field of the finite element mesh in the centre of the mesh cell of the rectilinear mesh.
- d) The initial mesh step length Δ_0 for each axis of the rectilinear mesh shall be calculated in accordance with Equation (2):

$$\Delta_0 \le \sqrt[3]{\frac{m}{\rho_{\text{max}}}} \tag{2}$$

where

m is the averaging mass of the target volume;

 ρ_{\max} is the maximum mass density of the geometry in the computational domain.

e) The psSAR for the subregion under evaluation shall be calculated on the initial mesh according to the procedure specified in IEC/IEEE 62704-1:2017. Then the subregion shall be resampled on a rectilinear mesh with a reduced mesh step size $\Delta_{i+1} = 0.5 \Delta_i$. This procedure shall be repeated until the difference in psSAR from the previous iteration to the present iteration is less than 1 %.

6.3 Power scaling

In FEM simulations, the accepted power is generally delivered to the device by means of a port with known characteristic impedance. Depending on the input impedance of the device, a specific power level is accepted by the antenna or load. The simulation results, including SAR, will be relative to this accepted power. To obtain the SAR for a different accepted power level, such as the target accepted power, the SAR results shall be adjusted by scaling using Equation (3):

$$SAR_{scaled} = SAR_{scaled} \frac{P_{acc, target}}{P_{acc, computed}}$$
 (3)

where

*P*_{acc,target} is the target accepted power;

 $P_{\text{acc.computed}}$ is the accepted power computed by the FEM simulation.

For these calculations, $P_{\text{acc,computed}}$ is the power delivered to the load by the simulation, which is found from the complex voltage and current at the feed-point of the FEM mesh in accordance with Equation (4):

$$\frac{\text{IEC/IEEE.} 62704-4:2020}{\text{https://standards.iteh.aj/catalog/standards/sist/070bb}511-f88f-486d-8852-f1defacesoremputed every 2704-4-2020}$$
(4)

where U and I are complex quantities, and the asterisk indicates complex conjugate.

If an incident plane wave source is applied, SAR can be scaled based on the incident power density. The incident power density can be computed using Equation (5):

$$P_{\rm inc} = \frac{1}{2} {\rm Re} \left\{ E_{\rm inc} \times H_{\rm inc}^* \right\}$$
(5)

where E_{inc} and H_{inc} represent the incident electric field and magnetic field from the plane wave. The computed incident power density can then be used to scale the SAR in the same manner as the accepted power.

Changes in SAR due to performance variations in radio frequency (RF) components that affect $P_{acc,target}$ (due to thermal, electrical, or other tolerances) shall be determined during experimental validation of the numerical model of the DUT (see 7.3). It shall be considered either by choosing the maximum possible value for $P_{acc,target}$ or by adding the performance variation in the uncertainty budget (see 7.4).

7 Considerations for the uncertainty evaluation

7.1 General

Assuming the FEM code has been implemented correctly, which shall be determined with the tests described in Clause 8, some uncertainties remain. This Clause 7 shows how they shall

be evaluated to obtain a measure of overall assessment uncertainty. It follows the computational uncertainty scheme of Clause 7 in IEC/IEEE 62704-1:2017, with modifications appropriate to FEM. As stated in the cited clause, the computational uncertainties are divided into the following three categories:

- a) discretization accuracy and uncertainty due to mesh density,
- b) numerical accuracy of the specific FEM implementation,
- c) accuracy of the numerical representation of the actual DUT.

Subclauses 7.2 through 7.4 specify general procedures for the evaluation of the uncertainty. When applied to device or application-specific FEM-based SAR simulation standards, there might be modifications appropriate to those applications. Further information can be found in Clause 7 of IEC/IEEE 62704-1:2017 and in [7], [8].

7.2 Uncertainty due to device positioning, mesh density, and simulation parameters

7.2.1 General

A representative model of the test configuration shall be used to determine the uncertainties due to mesh density, open boundary conditions, and other associated simulation parameters. For FEM, the contributions to the uncertainty due to device and phantom positioning are considered small because the mesh adapts to the surface of arbitrarily shaped objects. The remaining uncertainties are assumed to be covered in the evaluation of the uncertainty of the mesh density. Table 1 shows an example template for the quantification of the numerical uncertainty due to contributions described in 7.2.2 through 7.2.6.

Table 1 – Budget of the uncertainty contributions of the numerical algorithm and of the rendering of the test-setup or simulation-setup

IEC/IEEE 62704-4-2020									
a https	://standards.itel	n.ai/cat&log/sta	ndards/sest/070b	o511 e f88f-	4866	-8852- 9	h		
Uncertainty component	Subclause	dTöterance (%)	- Probability distribution	2 Div isor <i>f</i> (<i>d</i> , <i>h</i>)	c _i	Uncertainty (%)	v _i or ^v eff		
Mesh convergence	7.2.2		N	1	1				
Open boundary conditions	7.2.3		Ν	1	1				
Power budget	7.2.4		N	1	1				
Convergence of psSAR sampling	7.2.5		R	1,73	1				
Phantom dielectrics	7.2.6		R	1,73	1				
Combined std. uncerta									

NOTE 1 Column headings a to h are given for reference.

NOTE 2 Columns c, g, and h are filled in based on the results of the DUT simulations.

NOTE 3 Abbreviations used in Table 1:

N, R, U – normal, rectangular, U-shaped probability distributions

Divisor - divisor used to get standard uncertainty

NOTE 4 The divisor is a function of the probability distribution and degrees of freedom (v_i and v_{eff}).

NOTE 5 c_i is the sensitivity coefficient that is applied to convert the variability of the uncertainty component into a variability of psSAR.