

SLOVENSKI STANDARD SIST ISO 11269-1:2001

01-september-2001

?U_cjcghHJ`!`8c`c YjUb^Y`i]b_UcbYgbUÿ]``bUfUgh`]bghjc`!`%'XY.`AYhcXUaYf^Yb^UnUj]fUb^UfUghj`_cfYb]b

Soil quality -- Determination of the effects of pollutants on soil flora -- Part 1: Method for the measurement of inhibition of root growth

iTeh STANDARD PREVIEW

Qualité du sol -- Détermination des effets des polluants sur la flore du sol -- Partie 1: Méthode de mesurage de l'inhibition de la croissance des racines

SIST ISO 11269-1:2001

Ta slovenski standard je istoveten z: 2.6/5 je isto

ICS:

13.080.30 Biološke lastnosti tal Biological properties of soils

SIST ISO 11269-1:2001 en

SIST ISO 11269-1:2001

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 11269-1:2001 https://standards.iteh.ai/catalog/standards/sist/12e224bb-6d49-4fab-8d2c-92ccfdaa82c6/sist-iso-11269-1-2001

SIST ISO 11269-1:2001

INTERNATIONAL STANDARD

ISO 11269-1

First edition 1993-11-15

Soil quality — Determination of the effects of pollutants on soil flora —

Part 1: Method for the measurement of inhibition of root growths.iteh.ai)

SIST ISO 11269-1:2001

https://standards.jch.ai/catalog/standards/sist/12-224hh-6d49-4fbh-8d2c-Qualité du soil — Détermination des effets des polluants sur la flore du soil cctdaa82c6/sist-iso-11269-1-2001

Partie 1: Méthode de mesurage de l'inhibition de la croissance des racines

ISO 11269-1:1993(E)

Contents

	Р	age
1	Scope	1
2	Normative reference	1
3	Principle	1
4	Test plants and materials	1
5	Methods	2
6	Expression of results (see annex D)	3
7	Test report	3
Anr	nexes	
Α	Adaptation of the method for added substances	4
В	Recommended methods for incorporation of chemicals into soils	5
С	Examples of statistical treatment of results NDARD PR	EVIEW
D	Example of test results (standards.iteh.	ai)
E	Results of interlaboratory test of root elongation ISO 11269-1:2001	8
F	Protocol for ring test https://standards.iteh.ai/catalog/standards/sist/12e224	

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

[©] ISO 1993

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a votel.

International Standard ISO 11269-1 was prepared by Technical Committee ISO/TC 190, Soil quality, Sub-Committee SC 4, Biological methods.

ISO \$1269@odnsistslighthe following parts, under the general title Soil https://standards.it/qualityalog/Determination/of-the effects of pollutants on soil flora:

92ccfdaa82c6/sist-iso-11269-1-2001

- Part 1: Method for the measurement of inhibition of root growth
- Part 2: Method for the measurement of effects of chemicals on the emergence and growth of higher plants
- Part 3: Method for the measurement of germination
- Part 4: Guidance on field testing using higher plants

Annexes A, B, C, D, E and F of this part of ISO 11269 are for information only.

ISO 11269-1:1993(E)

Introduction

Chemical analysis of soil samples or waste materials disposed of on land provides substantial evidence of the suitability or otherwise of the soil for arable production, or the potential environmental risk resulting from the disposal of wastes such as sewage sludge on farmland. There is also a need to assess the quality of soil after reclamation of industrial sites and colliery tips or when capping landfill sites. As the ability of the soil to grow crops is the main criterion, a rapid growth test has been developed based on seedling growth in controlled environmental conditions.

Two major prerequisites of a phytotoxicity test are that it provides consistently reliable results and that it can be used at any time of the year. It is therefore essential to raise seeds in a controlled environment to ensure optimal growing conditions which can be maintained for any number of tests, producing reproducible results over a long period of time.

The test method described in this part of ISO 11269 may be used to compare soils, to monitor changes in their activity or to determine the effect of added substances.

SIST ISO 11269-1:2001 https://standards.iteh.ai/catalog/standards/sist/12e224bb-6d49-4fab-8d2c-92ccfdaa82c6/sist-iso-11269-1-2001

Soil quality — Determination of the effects of pollutants on soil flora —

Part 1:

Method for the measurement of inhibition of root growth

1 Scope

This part of ISO 11269 describes a preliminary test for the rapid estimation of soil quality by comparing the rate of growth of roots of a specified plant under standard conditions with that in a test soil.

The method is applicable to all soils, soil forming masoil or substance under test. Statistically significant terials, waste residues or chemicals which may be 1269-differences in the root lengths of seedlings grown in applied to soil, except where the contaminant is highly lards/siany test imedium compared to the controls is indicavolatile or only affects photosynthesis. 92ccfda82c6/sist-iso-11tive_of_2an_effect.

It is applicable to the measurement of the effects of substances deliberately added to the soil and to the comparison of soils of known and unknown quality.

The method is not intended for use as a measure of the ability of the soil to support sustained plant growth.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this part of ISO 11269. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this part of ISO 11269 are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 11274:—¹⁾, Soil quality — Determination of the water retention characteristic — Laboratory methods.

3 Principle

Growth of pregerminated seeds under controlled conditions for a set period depending on the test plant being used. The two control media are sand and soil. After the growth period, measurement of the root lengths from both of the controls and the unknown soil or substance under test. Statistically significant differences in the root lengths of seedlings grown in any test medium compared to the controls is indicative of an effect.

NOTE 1 Shoot length is also a useful parameter, and this can be measured in conjunction with root length to provide additional or corroborative data.

4 Test plants and materials

4.1 Plants

The test plant shall be grown from undressed seeds. NOTES

- 2 Barley (*Hordeum vulgare* L.) of the variety "CV Triumph" has been used for several years and is currently recommended. However, other barley varieties (undressed) will suffice, providing they have similar qualities of germination and root elongation.
- 3 the methodology of this test can also be adapted for use with dicotyledenous species with straight roots which are easily measurable.

¹⁾ To be published.

4.2 Pots

The pots shall be cylindrical, approximately 8 cm in diameter and 11 cm in height, and shall have parallel sides to ensure that the roots of seedlings are not restricted and do not encounter tapering side walls. The base of the pots shall be perforated and covered with filter paper if necessary.

NOTE 4 When filled to a height of 10 cm, the pots will contain approximately 500 g of air-dry soil.

4.3 Growth media

The growth media are the test soil, a control soil that is known to be of good quality and a sand control.

The sand control medium is washed industrial sand or other similar pure sand of the following particle size distribution: 10 % > 0.6 mm, 80 % between 0.2 mm and 0.6 mm, 10 % < 0.2 mm.

NOTE 5 The control soil and test soil should be of the same textural class, and be as similar as practicable in all respects other than the presence of the chemical or contaminant being investigated.

5.2.2 Control pots

Fill three weighed pots with industrial sand, ensuring that the material is not compacted in any way.

5.2.3 Soil containing test substances (if appropriate)

Dry and sieve the control soil into weighed pots, taking care to avoid compaction. Prepare sufficient pots for the three replicates of the soil control and all treatments. Select the inclusion rates for a preliminary or final test according to annex A. Incorporate the test substance using one of the methods described in annex B.

5.2.4 Unknown soil pots (if appropriate)

Dry and sieve the unknown soil. Fill three weighed pots, taking care to avoid compaction. Fill additional sets of three pots with mixtures of the unknown soil and either control soil which has been dried and sieved or industrial sand, to prepare diluted samples containing various concentrations of substances in the unknown soil.

iTeh STANDA53DPreparation for sowing

5 Methods

(Standar During this test) ensure that the soil is at 70 % water holding capacity (whc) by either of the following two methods:

tween 5 cm and 10 cm.

5.1 Experimental designhttps://standards.iteh.ai/catalog/standards/sit/12c274bhth/14c2

Growth in three growth media (4.3), a sand control, a known good quality soil preferably of the same textural class as the soil under test and the unknown soil, are each replicated three times. The sand control is used to confirm the reproducibility of the test carried out on different occasions, whilst the extents of growth in two soils are compared statistically.

The method may also be used to determine the possible toxic effects of solid or liquid chemicals incorporated into the soil (see annex A).

NOTE 6 If the test is conducted to determine the effect of added substances, and the type of soil used is not an essential requisite, the soil should be chosen so that it does not mask or reduce the effect of added substances.

considered to be at approximately 100 % who capacity. Reweigh the pots and allow to dry by evaporation to 70 % who and maintain at this mass for the entire test period.

When the surface of the soil is wet, remove the

pot, cover it with a watch glass and allow it to

stand on a rack overnight to drain. The soil is then

b) Determine the mass of water required for 70 % who in accordance with ISO 11274 on a separate soil sample. Add that mass of water to the pots (via either the top or the bottom), taking care to minimize the compaction of the soil surface, and maintain at this mass for the entire test period.

5.2 Preparation of pots (4.2)

5.2.1 General

Dry the industrial sand, test soil or soil to which test substances will be added at (30 ± 2) °C for 16 h, and then pass it through a 4 mm sieve. Prepare material for the control pots (5.2.2) and either soil containing the test substance (5.2.3) or unknown soil (5.2.4), as appropriate.

NOTES

- 7 It is preferable to use deionized water.
- 8 Method b) is particularly useful when studying water-soluble chemicals.

5.4 Preparation of the seeds

Germinate the seeds in a Petri dish, evenly distributed on a bed of filter paper moistened with distilled water, until the radicle has just emerged, e.g. normally 36 h to 48 h for barley at 20 °C in the absence of light. When the radicle has emerged but is less than 2 mm in length, plant six seeds, radicle down, approximately 10 mm beneath the surface of the test medium.

5.5 **Growing conditions**

Place the pots in a growth cabinet with preset day and night conditions. Weigh the pots daily and add deionized water to maintain the soil at 70 % who, taking care to avoid compaction, and replace them in a randomized design.

NOTE 9 The following conditions are recommended and have been found suitable for barley.

Condition	Day	Night
Duration (h)	12 to 16	8 to 12
Lighting	25 000 lm/m ²	Tungsten 45 W
Temperature (°C)	20 ± 2	16 ± 2
Humidity (%)	60 ± 5	60 ± 5
Moisture (% whc)	70 ± 5	70 ± 5

If barley is used as the test plant (4.1), use a growth R time of 5 d. If barley is not the test plant, first grow the chosen test plant in sand to determine the maxids.iteused: mum root length obtainable from seed reserves. Ensure that the root length does not exceed 80 % of the depth of the soil in the test pots by a suitable choice 1269of pots and growth time. Select a growth time that is lards/sise) length of the longest root of each plant within the known to produce roots no longer than 280% of the iso-11269 pots containing depth of the soil in the pot.

If the method is being used to investigate the NOTE 10 growth of plants other than barley, growth times longer or shorter than 5 d may be necessary.

After the appropriate growth period, lay each pot on its side in a trough of water 5 cm deep, and wash the soil gently out of the pots. Wash each plant and measure the longest root to the nearest 0,5 mm.

NOTE 11 The shoot can also be measured if desired.

Expression of results (see annex D)

6.1 Data

Measure the length of the longest root of each plant and determine the mean length of the longest root for each growth medium or treatment level tested. Compare the mean root lengths of the treatments to those from the control pots. Evaluate the results using a suitable statistical test.

NOTE 12 Student's t-test or Dunnett's t-test are examples of suitable methods (see annex C).

A soil of poor quality induces a significant reduction in root length compared to good soil or the control sand.

6.2 Precision

In an interlaboratory test involving six laboratories, all were able to determine at the 95 % confidence level that a 10 mm difference in mean root length (approximately 10 %) was significant. (See annex E.)

7 **Test report**

The test report shall include the following information:

- a) a reference to this part of ISO 11269;
- b) a method of uniquely identifying the soil and its source;
- c) variety of seed, or details of other plant species
- d) growing conditions;
- - 1) sand,
 - 2) soil,
 - 3) test sample:
- f) a description of the visual appearance of the soil and site, if available:
- g) any other effects observed;
- h) the results of the test (in the form of a table) including treatment, replicate number and length of the longest root on each plant, and whether or not any growth inhibition is statistically significant or the level of significance of any growth inhibition observed.