INTERNATIONAL STANDARD

First edition 1993-11-15

Soil quality — Determination of the effects of pollutants on soil flora —

iTeh Method for the measurement of inhibition of root growths.iteh.ai)

ISO 11269-1:1993

https://standards.iteh.gi/catalog/standards/sist/767e04e3-f84f-4f8c-858h-Gualité du sol ----- Détermination des effets des polluants sur la flore du sol ebl⁸¹⁹⁴et21c/iso-11269-1-1993

Partie 1: Méthode de mesurage de l'inhibition de la croissance des racines

Contents

1	Scope	1		
2	Normative reference	1		
3	Principle	1		
4	Test plants and materials	1		
5	Methods	2		
6	Expression of results (see annex D)	3		
7	Test report	3		
Annexes				
Α	Adaptation of the method for added substances	4		
В	Recommended methods for incorporation of chemicals into soils	5		
С	Examples of statistical treatment of results NDARD PR	EVIEW		
D	Example of test results (standards.iteh.a	7i)		
Е	Results of interlaboratory test of root elongation	8		
F	Protocol for ring test https://standards.iteh.ai/catalog/standards/sist/767e04 ebf8194ef21c/iso-11269-1-1993	3-f84f-4f8c-858b-		

Page

© ISO 1993

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 11269-1 was prepared by Technical Committee ISO/TC 190, *Soil quality*, Sub-Committee SC 4, *Biological methods*.

ISO 11269_defsists of the following parts, under the general title Soil https://standards.itqualitytalegDetermination?of4thefeffects-of8pollutants on soil flora: ebf8/94et21c/iso-11269-1-1993

- Part 1: Method for the measurement of inhibition of root growth

- Part 2: Method for the measurement of effects of chemicals on the emergence and growth of higher plants
- Part 3: Method for the measurement of germination
- Part 4: Guidance on field testing using higher plants

Annexes A, B, C, D, E and F of this part of ISO 11269 are for information only.

Introduction

Chemical analysis of soil samples or waste materials disposed of on land provides substantial evidence of the suitability or otherwise of the soil for arable production, or the potential environmental risk resulting from the disposal of wastes such as sewage sludge on farmland. There is also a need to assess the quality of soil after reclamation of industrial sites and colliery tips or when capping landfill sites. As the ability of the soil to grow crops is the main criterion, a rapid growth test has been developed based on seedling growth in controlled environmental conditions.

Two major prerequisites of a phytotoxicity test are that it provides consistently reliable results and that it can be used at any time of the year. It is therefore essential to raise seeds in a controlled environment to ensure optimal growing conditions which can be maintained for any number of tests, producing reproducible results over a long period of time. **PREVIEW**

The test method described in this part of ISO 11269 may be used to compare soils, to monitor changes in their activity or to determine the effect of added substances.

<u>ISO 11269-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/767e04e3-f84f-4f8c-858bebf8f94ef21c/iso-11269-1-1993

Soil quality — Determination of the effects of pollutants on soil flora —

Part 1:

Method for the measurement of inhibition of root growth

1 Scope

This part of ISO 11269 describes a preliminary test for the rapid estimation of soil quality by comparing the rate of growth of roots of a specified plant under standard conditions with that in a test soil.

The method is applicable to all soils, soil forming materials, waste residues or chemicals which may be 69-11 differences in the root lengths of seedlings grown in applied to soil, except where the contaminant is highly dards/siany testemedium compared to the controls is indicavolatile or only affects photosynthesis. eb/8/94e(21c/iso-1126tive of an effect.

It is applicable to the measurement of the effects of substances deliberately added to the soil and to the comparison of soils of known and unknown quality.

The method is not intended for use as a measure of the ability of the soil to support sustained plant growth.

3 Principle

Growth of pregerminated seeds under controlled conditions for a set period depending on the test plant being used. The two control media are sand and soil. After the growth period, measurement of the root lengths from both of the controls and the unknown soil or substance under test. Statistically significant differences in the root lengths of seedlings grown in significant compared to the controls is indica-

NOTE 1 Shoot length is also a useful parameter, and this can be measured in conjunction with root length to provide additional or corroborative data.

4 Test plants and materials

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this part of ISO 11269. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this part of ISO 11269 are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 11274:—¹⁾, Soil quality — Determination of the water retention characteristic — Laboratory methods.

4.1 Plants

The test plant shall be grown from undressed seeds.

NOTES

2 Barley (*Hordeum vulgare* L.) of the variety "CV Triumph" has been used for several years and is currently recommended. However, other barley varieties (undressed) will suffice, providing they have similar qualities of germination and root elongation.

3 the methodology of this test can also be adapted for use with dicotyledenous species with straight roots which are easily measurable.

¹⁾ To be published.

4.2 Pots

The pots shall be cylindrical, approximately 8 cm in diameter and 11 cm in height, and shall have parallel sides to ensure that the roots of seedlings are not restricted and do not encounter tapering side walls. The base of the pots shall be perforated and covered with filter paper if necessary.

NOTE 4 When filled to a height of 10 cm, the pots will contain approximately 500 g of air-dry soil.

4.3 Growth media

The growth media are the test soil, a control soil that is known to be of good quality and a sand control.

The sand control medium is washed industrial sand or other similar pure sand of the following particle size distribution: 10 % > 0,6 mm, 80 % between 0,2 mmand 0,6 mm, 10 % < 0,2 mm.

NOTE 5 The control soil and test soil should be of the same textural class, and be as similar as practicable in all respects other than the presence of the chemical or contaminant being investigated.

5.2.2 Control pots

Fill three weighed pots with industrial sand, ensuring that the material is not compacted in any way.

5.2.3 Soil containing test substances (if appropriate)

Dry and sieve the control soil into weighed pots, taking care to avoid compaction. Prepare sufficient pots for the three replicates of the soil control and all treatments. Select the inclusion rates for a preliminary or final test according to annex A. Incorporate the test substance using one of the methods described in annex B.

5.2.4 Unknown soil pots (if appropriate)

Dry and sieve the unknown soil. Fill three weighed pots, taking care to avoid compaction. Fill additional sets of three pots with mixtures of the unknown soil and either control soil which has been dried and sieved or industrial sand, to prepare diluted samples containing various concentrations of substances in the unknown soil.

iTeh STANDA 5.3 Preparation for sowing

Methods 5

(standar During this test) ensure that the soil is at 70 % water holding capacity (whc) by either of the following two methods: **ISO 11**

5.1 Experimental design https://standards.itch.ai/catalog/standards/standard ebf8f94ef21c/iso-11 fitting trough with a water depth maintained be-Growth in three growth media (4.3), a sand control, a

known good quality soil preferably of the same textural class as the soil under test and the unknown soil. are each replicated three times. The sand control is used to confirm the reproducibility of the test carried out on different occasions, whilst the extents of growth in two soils are compared statistically.

The method may also be used to determine the possible toxic effects of solid or liquid chemicals incorporated into the soil (see annex A).

NOTE 6 If the test is conducted to determine the effect of added substances, and the type of soil used is not an essential requisite, the soil should be chosen so that it does not mask or reduce the effect of added substances.

5.2 Preparation of pots (4.2)

5.2.1 General

Dry the industrial sand, test soil or soil to which test substances will be added at (30 + 2) °C for 16 h, and then pass it through a 4 mm sieve. Prepare material for the control pots (5.2.2) and either soil containing the test substance (5.2.3) or unknown soil (5.2.4), as appropriate.

tween 5 cm and 10 cm.

When the surface of the soil is wet, remove the pot, cover it with a watch glass and allow it to stand on a rack overnight to drain. The soil is then considered to be at approximately 100 % whc capacity. Reweigh the pots and allow to dry by evaporation to 70 % whc and maintain at this mass for the entire test period.

b) Determine the mass of water required for 70 % whc in accordance with ISO 11274 on a separate soil sample. Add that mass of water to the pots (via either the top or the bottom), taking care to minimize the compaction of the soil surface, and maintain at this mass for the entire test period.

NOTES

7 It is preferable to use deionized water.

8 Method b) is particularly useful when studying watersoluble chemicals.

5.4 Preparation of the seeds

Germinate the seeds in a Petri dish, evenly distributed on a bed of filter paper moistened with distilled water, until the radicle has just emerged, e.g. normally 36 h to 48 h for barley at 20 °C in the absence of light. When the radicle has emerged but is less than 2 mm in length, plant six seeds, radicle down, approximately 10 mm beneath the surface of the test medium.

5.5 Growing conditions

Place the pots in a growth cabinet with preset day and night conditions. Weigh the pots daily and add deionized water to maintain the soil at 70 % whc, taking care to avoid compaction, and replace them in a randomized design.

NOTE 9 The following conditions are recommended and have been found suitable for barley.

Condition	Day	Night
Duration (h)	12 to 16	8 to 12
Lighting	25 000 lm/m ²	Tungsten 45 W
Temperature (°C)	20 ± 2	16 ± 2
Humidity (%)	60 ± 5	60 ± 5
Moisture (% whc)	70 ± 5	70 ± 5

If barley is used as the test plant (4.1), use a growth RD PREVIEW time of 5 d. If barley is not the test plant, first grow c) variety of seed, or details of other plant species the chosen test plant in sand to determine the maximum root length obtainable from seed reserves. En-

sure that the root length does not exceed 80 % of the

depth of the soil in the test pots by a suitable choice 69-

of pots and growth time. Select a growth time that is dards/sig/71/2 ngth of the longest root of each plant within the known to produce roots no longer than 80% of the o-11269-1 pots containing depth of the soil in the pot.

NOTE 10 If the method is being used to investigate the growth of plants other than barley, growth times longer or shorter than 5 d may be necessary.

After the appropriate growth period, lay each pot on its side in a trough of water 5 cm deep, and wash the soil gently out of the pots. Wash each plant and measure the longest root to the nearest 0,5 mm.

NOTE 11 The shoot can also be measured if desired.

6 Expression of results (see annex D)

6.1 Data

Measure the length of the longest root of each plant and determine the mean length of the longest root for each growth medium or treatment level tested. Compare the mean root lengths of the treatments to those from the control pots. Evaluate the results using a suitable statistical test.

NOTE 12 Student's *t*-test or Dunnett's *t*-test are examples of suitable methods (see annex C).

A soil of poor quality induces a significant reduction in root length compared to good soil or the control sand.

6.2 Precision

In an interlaboratory test involving six laboratories, all were able to determine at the 95 % confidence level that a 10 mm difference in mean root length (approximately 10 %) was significant. (See annex E.)

7 Test report

The test report shall include the following information:

- a) a reference to this part of ISO 11269;
- b) a method of uniquely identifying the soil and its

1) sand,

2) soil,

3) test sample;

d) growing conditions;

- f) a description of the visual appearance of the soil and site, if available;
- g) any other effects observed;
- h) the results of the test (in the form of a table) including treatment, replicate number and length of the longest root on each plant, and whether or not any growth inhibition is statistically significant or the level of significance of any growth inhibition observed.

Annex A

(informative)

Adaptation of the method for added substances

A.1 Preliminary test

A preliminary test is used to find the range of concentrations affecting soil quality. The chemical is incorporated into the soil according to annex B at concentrations of 0 mg/kg (control), 1 mg/kg, 10 mg/kg, 100 mg/kg and 1 000 mg/kg of oven-dried soil.

A.2 Final test

Select the concentrations in a geometric series with a factor preferably not exceeding 2, to give an estimate of the lowest concentration that induces growth reduction (LOEC). Substances need not be tested at concentrations greater than 1 000 mg/kg of ovendried soil.

Replicate pots containing control soil and each concentration of chemical three times.

NOTE 13 A geometric series is a series of quantities in which each term is obtained by multiplying the preceding term by a constant factor termed the common ratio, e.g. 1, 3, 9, 27, 81

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11269-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/767e04e3-f84f-4f8c-858bebf8f94ef21c/iso-11269-1-1993

Annex B

(informative)

Recommended methods for incorporation of chemicals into soils

B.1 Chemicals soluble in water

Dissolve the chemical in water and mix directly with the soil. Ensure that the same quantity of water is used for each batch of soil and for each concentration of chemical.

B.2 Chemicals with low water solubility

Dissolve the chemical in water and mix with sand. A rotating drum is useful for this. Mix the treated sand

with soil. If large quantities of water are required, the sand can be dried in the rotating drum, with a current of air, before mixing with the soil.

B.3 Chemicals soluble in a solvent

Dissolve the chemical in a suitable volatile solvent and mix with sand. Dry the sand in a stream of air while continuing mixing (e.g. while rotating the drum as above). Mix the treated sand with soil. Ensure that the same quantity of solvent and the same quantity of sand are used for all treatments, including the control.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11269-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/767e04e3-f84f-4f8c-858bebf8f94ef21c/iso-11269-1-1993