

Edition 2.0 2015-04

TECHNICAL SPECIFICATION SPECIFICATION TECHNIQUE

Power electronics systems and equipment - Operation conditions and characteristics of active infeed converter (AIC) applications including design recommendations for their emission values below 150 kHz

Systèmes et équipements électroniques de puissance – Conditions de fonctionnement et caractéristiques des convertisseurs à alimentation active (AIC), y compris les recommandations de conception pour leurs valeurs d'émission inférieures à 150 kHz

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a 2 variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. 31011db5d210/ie

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

More than 60 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 15 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

Plus de 60 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

Edition 2.0 2015-04

TECHNICAL SPECIFICATION

SPECIFICATION TECHNIQUE

Power electronics systems and equipment – Operation conditions and characteristics of active infeed converter (AIC) applications including design recommendations for their emission values below 150 kHz

IEC TS 62578:2015

Systèmes et équipements électroniques de puissance – Conditions de fonctionnement et caractéristiques des convertisseurs à alimentation active (AIC), y compris les recommandations de conception pour leurs valeurs d'émission inférieures à 150 kHz

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.200

ISBN 978-2-8322-2585-1

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

F	OREWO	RD	9
IN	ITRODU	CTION	11
1	Scop	e	12
2	Norm	ative references	12
3	Term	s and definitions	13
4	Gene	eral system characteristics of PWM active infeed converters connected to the	
-	powe	r supply network	18
	4.1	General	18
	4.2	Basic topologies and operating principles	18
	4.2.1	General	18
	4.2.2	Operating principles	18
	4.2.3	Equivalent circuit of an AIC	20
	4.2.4	Filters	21
	4.2.5	Pulse patterns	21
	4.2.6	Control methods	22
	4.2.7	Control of current components	22
	4.2.8	Active power factor correction	22
	4.3	AIC rating . I. P. R. F. V. LE. W	23
	4.3.1	General	23
	4.3.2	Converter rating under sinusoidal conditions	23
	4.3.3	Converter rating in case of harmonic currents	23
	4.3.4	Converter rating under dynamic conditions https://standards.iteh.avcatalog/standards/sist/4db325a6-dbdc-440e-a0df-	24
5	Elect	romagnetic compatibility (EMC) considerations for the use of AICs	24
	5.1	General	24
	5.2	Low-frequency phenomena (<150 kHz)	25
	5.2.1	General	25
	5.2.2	Emerging converter topologies and their advantages for the power supply network	25
	5.2.3	Active equalizing of the power supply network	27
	5.2.4	Measured power supply network impedances in the range between	
		2 kHz to 20 kHz	32
	5.2.5	Proposal of an appropriate line impedance stabilisation network (LISN) from 2 kHz to 9 kHz	37
	5.2.6	Effects on industrial equipment in the frequency band 2 kHz to 9 kHz	41
	5.3	High-frequency phenomena (> 150 kHz)	44
	5.3.1	General	44
	5.3.2	Mitigation of distortion	44
	5.3.3	Immunity	44
	5.3.4	EMI filters	44
	5.4	Audible noise effects	45
	5.5	Leakage currents	45
	5.6	Aspects of system integration and dedicated tests	45
6	Char	acteristics of a PWM active infeed converter of voltage source type and two	
	level	topology	46
	6.1	General	46
	6.2	General function, basic circuit topologies	46

	6.3	Power control	49
	6.4	Dynamic performance	50
	6.5	Desired non-sinusoidal line currents	50
	6.6	Undesired non-sinusoidal line currents	50
	6.7	Availability and system aspects	51
	6.8	Operation in active filter mode	52
7	Char	acteristics of a PWM active infeed converter of voltage source type and three	50
	lever		52
	7.1	General function, basic circuit topologies	52
	7.2	Power control	53
	7.3	Dynamic performance	53
	7.4 	Undesired non-sinusoidal line currents	54
	7.5	Availability and system aspects	54
8	Char Multi	acteristics of a PWM Active Infeed Converter of Voltage Source Type and Level Topology	55
	8.1	General function, basic circuit topologies	55
	8.2	Power control	56
	8.3	Dynamic performance	
	8.4	Power supply network distortion	57
	8.5	Availability and system aspects	57
9	Char	acteristics of a F3E AIC of the Voltage Source Type VILE.	
-	9.1	General function, basic circuit topologies	
	9.2	Power control and line side filter	
	9.3	Dynamic performance	61
	9.4	Harmonic current	61
10	Char	acteristics of an AIC of Voltage Source Type in Pulse Chopper Topology	62
	10.1	General	62
	10.2	General function, basic circuit topologies	62
	10.3	Desired non-sinusoidal line current	63
	10.4	Undesired non-sinusoidal line current	63
	10.5	Reliability	63
	10.6	Performance	64
	10.7	Availability and system aspects	64
11	Char	acteristics of a two level PWM AIC of current source type (CSC)	64
	11.1	General	64
	11.2	General function, basic converter connections	64
	11.3	Power control	66
	11.4	Dynamic performance	67
	11.5	Line current distortion	68
	11.6	Operation in active filter mode	68
	11.7	Availability and system aspects	68
Ar	nnex A ((informative)	69
	A.1	Control methods for AICs in VSC (Voltage Source Converter) topology	69
	A.1.1	General	69
	A.1.2	2 Considerations of control methods	69
	A.1.3	Short-circuit ride through functionality for decentralized power infeed with AIC	70
	A.1.4	Fault ride through mode	70

A.2	Examples of practical realized AIC applications	72
A.2.1	AIC of current source type (CSC)	72
A.2.2	Active infeed converter with commutation on the d.c. side (reactive power converter)	74
A.3	Details concerning two level and multi-level AICs in VSC Topology	76
A.3.1	Properties of active infeed converters (PWM) with different number of levels	76
A.3.2	Examples of typical waveforms of AICs	77
A.3.3	Construction and realization	78
A.4	Basic transfer rules between voltage and current distortion of an AIC	78
A.5	Examples of the influence of AICs to the voltage quality	79
A.6	Withstand capability of power capacitors towards distortion in the range of 2 kHz to 9 kHz	80
A.6.1	General	80
A.6.2	Catalogue information about permissible harmonic load	82
A.6.3	Frequency boundaries for permissible distortion levels	82
A.6.4	Frequency spectrum of active infeed converters	83
A.6.5	Conclusion	84
A.7	Impact of additional AIC filter measures in the range of 2 kHz to 9 kHz	85
A.7.1	General	85
A.7.2	Example of a PDS constellation (AIC and CSI)	86
A.7.3	Conclusion STANDARD PREVIEW	88
A.8	Example of the power supply network impedance measurement	89
A.8.1	General	89
A.8.2	Basic principle of measurement25782015	89
A.8.3	Harmonic component/injection/methods/for/measurement/df-	90
A.8.4	Harmonic current generation by disturbing device	90
A.8.5	References based on current injection by disturbance (Method A)	90
A.8.6	References based on sinusoidal single frequency injection (Method B)	92
Annex B (informative)	94
B.1	Basic considerations for design recommendations of AICs in the range of	04
D 1 1		94 04
D.I.I D.1.1	General	94 ۵۸
D.1.2	Withstand canability of newer canacitors, connected to the newer	94
D.1.3	supply network and recommendation for the compatibility in the frequency range 2 kHz to 9 kHz	95
B.1.4	Basic conditions for setting the capacitor withstand capability curve	95
B.1.5	Matching of AIC converters (2-Level PWM) to different power supply network conditions without overloading the power capacitor burden	97
B.1.6	Considerations in regard to medium voltage power supply networks	99
B.1.7	AIC filtering considerations	100
B.1.8	AIC appropriate technical and economical amount	100
B.1.9	Frequency range from 2 kHz to 9 kHz	101
B.2	Design recommendations for conducted emission of low voltage AICs in the reasonable context of higher frequencies between 9 kHz and 150 kHz	102
B.2.1	General	102
B.2.2	Data collection results	103
B.2.3	Conclusions	105
Bibliograp	hy	107

Figure 1 – AIC in VSC topology, basic structure	19
Figure 2 – AIC in CSC topology, basic structure	19
Figure 3 – Equivalent circuit for the interaction of the power supply network with an AIC	20
Figure 4 – Voltage and current vectors of line and converter at fundamental frequency for different load conditions	23
Figure 5 – The basic issues of EMC as tools of economics	24
Figure 6 – Typical power supply network current $i_{L}(t)$ and voltage $u_{LN}(t)$ of a phase controlled converter with d.c. output and inductive smoothing	26
Figure 7 – Typical power supply network current $i_{L}(t)$ and voltage $u_{LN}(t)$ of an uncontrolled converter with d.c. output and capacitive smoothing	26
Figure 8 – Typical power supply network current $i_{L}(t)$ and voltage $u_{LN}(t)$ of an AIC realized by a PWM Converter with capacitive smoothing without additional filters	26
Figure 9 – Example of attainable active and reactive power of the AIC (VSC-type) at different line to line voltages in per unit (with 10 % combined transformer and filter inductor short-circuit voltage, X/R ratio = 10/1, d.c. voltage = 6,5 kV)	27
Figure 10 – Principle of compensating given harmonics in the power supply system by using an AIC and suitable control simultaneously	28
Figure 11 – Typical Voltage Distortion in the Line-to-Line and Line-to-Neutral Voltage generated by an AIC without additional filters (u in % and t in degrees)	29
Figure 12 – Basic characteristic of the relative voltage distortion (59th harmonic) of one AIC operated at a pulse frequency of 3 kHz versus R_{SCe} with the line impedance according to 5.2.4	30
Figure 13 – Basic characteristic of the relative current emission (59th harmonic) of one AIC at a pulse frequency of 3 kHz versus (RSC) with the line impedance according to 5.2.4	31
Figure 14 – Single phase electric circuit of the three commonly used differential mode passive line filter topologies for VSC and one example for passive damping	31
Figure 15 – Example of the attenuation of the VSC line to line voltage to the line to line voltage at the IPC with state of the art differential mode passive line filter topologies	32
Figure 16 – Connection of the power supply network impedance measurement equipment	33
Figure 17 – Example of the measured impedance of a low-voltage transformer under no load condition S = 630 kVA, $u_{\rm K}$ = 6,08 %	34
Figure 18 – Measured variation of the power supply network impedance over the course of a day at one location	34
Figure 19 – Power supply network impedance with partly negative imaginary part	35
Figure 20 – Distribution of power system impedance (measured between phase and neutral conductor) in low-voltage systems versus frequency	35
Figure 21 – Statistical distribution of positive-sequence impedance versus frequency in low-voltage power supply networks	37
Figure 22 – Equivalent circuit describing the power supply network impedance	38
Figure 23 – Circuit topology for power system simulation	38
Figure 24 – Approximated and measured 50 % impedance curve	39
Figure 25 – Single phase circuit topology according to IEC 61000-4-7+ used for line impedance stabilisation network	40
Figure 26 – Three-phase circuit topology for the line impedance stabilisation network	41
Figure 27 – Impedance variation in the 90 % curve of the LISN described in Figure 26	41
Figure 28 – PDS with large d.c. capacitance	43

Figure 29 – PDS with large capacitance and line inductor	43
Figure 30 – PDS with a large d.c. capacitance and inductors in the d.c. link	43
Figure 31 – Basic EMI filter topology	45
Figure 32 – Block diagram of a PDS with high frequency EMI filter system	45
Figure 33 – Basic illustration of a topology of a two level PWM voltage source AIC	47
Figure 34 – Typical waveforms of voltages $u_{S1N} / U_{LN, 1}$ and voltage $u_{S12} / U_{LN, 1}$ at pulse frequency of 4 kHz.	48
Figure 35 – Typical waveforms of the common mode voltage $u_{CM} / U_{LN,1}$ at pulse frequency of 4 kHz. Power supply frequency is 50Hz	48
Figure 36 – Waveform of the current i_{L1} / I_{equ} at pulse frequency of 4 kHz, relative impedance of $u_{SCV,equ} = 6 \%$.	49
Figure 37 – Block diagram of a two level PWM AIC	49
Figure 38 – Distortion of the current i_{L1} of reactance X_{equ} , pulse frequency: 4 kHz, relative reactance of $u_{SCV,equ} = 6 \%$	51
Figure 39 – Typical voltages $u_{L1N} / U_{LN, 1}$ and $u_{L12} / U_{LN, 1}$ at pulse frequency of 4 kHz, relative reactance $u_{SCV,equ} = 6 \%$, $R_{SCe} = 100$	51
Figure 40 – Basic topology of a three level AIC. For a Power Drive System (PDS) the same topology may be used also on the load side	52
Figure 41 – Typical curve shape of the phase-to-phase voltage of a three level PWM converter	53
Figure 42 – Example of a sudden load change of a 13 MW three level converter where the current control achieves a response time within 5 ms	54
Figure 43 – Typical topology of a flying capacitor (FC) four level AIC using IGBTs	55
Figure 44 – Typical curve shape of the phase-to-phase voltage of a multi-(four)- level AIChttps://standards.iteh.ai/catalog/standards/sist/4db325a6-dbdc-440e-a0df	56
Figure 45 – Distorting frequencies and amplitudes in the line voltage (measured directly at the bridge terminals in Figure 25 and the line current of a multilevel (four) AIC (transformer with 10 % short-circuit voltage)	57
Figure 46 – Topology of a F3E AIC	58
Figure 47 – Line side filter and equivalent circuit for the F3E-converter behaviour for the power supply network	59
Figure 48 – Current transfer function together with R_{SCe} = 100 and R_{SCe} = 750 and a line side filter: G(f) = i_{L1}/i_{CONV}	59
Figure 49 – PWM – voltage distortion over power supply network impedance for F3E- infeed including power supply network side filter	60
Figure 50 – Input current spectrum of a 75kW-F3E-converter	61
Figure 51 – Harmonic spectrum of the input current of an F3E-converter with R_{SCe} = 100	61
Figure 52 – An illustration of a distortion effect caused by a single phase converter with capacitive load	62
Figure 53 – a.c. to a.c. AIC pulse chopper, basic circuit	63
Figure 54 – Illustration of a converter topology for a current source AIC	65
Figure 55 – Typical waveforms of currents and voltages of a current source AIC with high switching frequency	66
Figure 56 – Typical block diagram of a current source PWM AIC	67
Figure 57 – Current source AIC used as an active filter to compensate the harmonic currents generated by a nonlinear load	67
Figure 58 – Step response (reference value and actual value) of current source AIC with low switching frequency [33]	68

Figure A.1 – Principle sketch for combined voltage- and current-injecting modulation example for phase leg R	71
Figure A.2 – Example for controlled phase current during a voltage dip at the power supply network using hysteresis plus PWM control	72
Figure A.3 – Typical waveforms of electrical power supply network current and voltage for a current source AIC with low switching frequency [33]	72
Figure A.4 – Currents and voltages in a (semiconductor) valve device of an AIC and a machine side converter both of the current source with low pulse frequency [33]	73
Figure A.5 – Total harmonic distortion of electrical power supply network and motor current [33] remains always below 8 % (triangles in straight line) in this application	73
Figure A.6 – Basic topology of an AIC with commutation on the d.c. side (six pulse variant)	74
Figure A.7 – Dynamic performance of a reactive power converter	75
Figure A.8 – Line side current for a twelve pulse Reactive Power Converter in a capacitive and inductive operation mode ($u_{SCV,equ} = 15\%$)	75
Figure A.9 – The origin of the current waveform of a RPC by the line voltage (sinusoidal) and the converter voltage (rectangular)	76
Figure A.10 – Two level topology with nominal voltage of maximum 1 200 V and timescale of 5 ms/div	77
Figure A.11 – Three level topology with nominal voltage of maximum 2 400 V and timescale of 5 ms/div	77
Figure A.12 – Four level topology with nominal voltage of maximum 3 300 V and timescale of 5 ms/div	78
Figure A.13 – General influence of significant characteristics to the voltage distortion and current distortion	79
Figure A.14 – Measuredsreduction of voltage distortion when four AICs are connected to the power supply network	80
Figure A.15 – Excerpts from a catalogue information of a power capacitor manufacturer; 760 V AC; (rated voltage: 690 V AC) for temperature calculation	81
Figure A.16 – Reactive power and losses of a power capacitor supplied by a source with constant reference voltage and variable frequency ($R_{CP} = f(h)$)	82
Figure A.17 – Apparent power and losses of a typical power capacitor at different voltage distortion levels and the critical frequency boundaries (at singular frequency) where the temperature rise reaches substantial values (vertical arrows)	83
Figure A.18 – Voltage spectrum of an AIC and the impact of a line impedance reduction to the temperature of the capacitor (from 10 K to 0,44 K) and the composition of the spectrum.	84
Figure A.19 – A wind turbine plant and a mine winder drive connected on the same power line	86
Figure A.20 – Power supply network configuration for the plant of Figure A.19 with allocated measurement points	86
Figure A.21 – Regular current of the CSI (AIC-filter disabled) and amplification of the current in case of resonance caused by the AIC-filter circuit (when AIC filter is enabled)	87
Figure A.22 – Basic principle of impedance measurement.	89
Figure A.23 – Harmonic current generation by disturbing device	90
Figure A.24 – Measurement by switching a resistor	91
Figure A.25 – Measurement by a capacitor bank	91
Figure A.26 – A 6,6 kV power supply network impedance measurement system for	
islanding detection by injecting internarmonics	92

Figure B.1 – Withstand capability level towards harmonic voltages in the power supply network in view of permissible temperature rise within capacitors if the voltage distortion is determined either by one predominating frequency (upper line) or if the distortion is predominantly determined by a harmonic spectrum, caused by several parallel operated AICs (2-Level PWM) (lower line)	96
Figure B.2 – Harmonic voltage spectrum of one 2-Level PWM AIC with acceptable temperature increase of a power capacitor not exceeding 10 K	97
Figure B.3 – Maximum voltage distortion of a spectrum, caused by several AICs (single phase topologies)	98
Figure B.4 – Maximum voltage distortion of a spectrum, caused by several AICs (three phases topologies).	98
Figure B.5 – Spreadsheet of matching single phase AICs (2-level) to different power supply network conditions in order to apply the power capacitor limit curves	99
Figure B.6 – Spreadsheet of matching three phases AICs (2-level) to different power supply network conditions in order to apply the power capacitor limit curves	99
Figure B.7 – Illustration of the typical power supply network resonance frequency by increasing AIC filtering population, versus the voltage distortion level	. 100
Figure B.8 – Sketch of the typical size/cost of an AIC application versus switching frequency of the AIC	. 101
Figure B.9 – Illustration of the probability of overload and stress problems for the power supply network and the equipment connected thereto, depending on stipulated distortion levels fixed in miscellaneous assumptions	. 101
Figure B.10 – Results of the data collection versus the maximum values proposed in the IEC TS 62578 for products rated above 75 kVA	. 103
Figure B.11 – Results of the data collection versus the maximum values proposed in the IEC TS 62578 for products rated below 75 kVA 2015	. 104
Figure B.12 – Results of the data collection versus the maximum values proposed in the IEC TS 62578 for products rated above 75 kVA62578-2015.	. 104
Figure B.13 – Recommended maximum emission values for AIC of different categories in the range from 9 kHz up to 150 kHz	. 105
Table 1 Parameters of line impedance stabilisation network for different nower	
system impedance curves	39
Table 2 – Parameters of the LISN described in Figure 25 and Figure 26	40
Table A.1 – Condition state 1: positive current limit reached, transistor T1 is switch-off to reduce the current	71
Table A.2 – Condition state 2: negative current limit reached, transistor T2 is switch-off to reduce the current	71
Table A.3 – Condition state 0: current in phase R within tolerance range, pure voltage injection active (e.g. with PWM)	71
Table A.4 – Comparison of different PWM AICs of VSC topology	76
Table A.5 – Voltage distortion on both power lines (II and III) without and with filter circuit (the filter had been designed to achieve 0,2 % distortion level on the MV-power line)	87
Table A.6 – Current distribution within the network described for specific frequencies and on allocated measurement points as pointed out in Figure A.20	88
Table B.1 – AIC design recommendation for a maximum distortion factor in the frequency range from 2 to 9 kHz	. 102
Table B.2 – Recommended maximum emission values for AIC of different categories inthe range from 9 kHz up to 150 kHz	. 106

INTERNATIONAL ELECTROTECHNICAL COMMISSION

POWER ELECTRONICS SYSTEMS AND EQUIPMENT –

Operation conditions and characteristics of active infeed converter (AIC) applications including design recommendations for their emission values below 150 kHz

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. TANDARD PREVIEW
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity <u>IEC National Committees</u> undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- The subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62578, which is a technical specification, has been prepared by IEC technical committee TC 22: Power electronic systems and equipment.

This second edition cancels and replaces the first edition published in 2009. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) IEC TS 62578, in its revised version includes observed values out of practical applications for emission values below 150 kHz.
- b) Therefore the document has been extended compared to the first edition, several detailed analysis results are given in the extended Annexes.
- c) Design recommendations have been derived from the international working group by an assessment of the power supply impedances between 2 kHz and 9 kHz, a comprehensive analysis of the withstand capability of power capacitors against harmonic currents injected by AIC, immunity tests of equipment and considerations about shifted resonances in the power supply network with increased population of undamped filter capacitors.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
22/235/DTS	22/239/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table **PREVIEW**

The French version of this technical specification has not been voted upon.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

https://standards.iteh.ai/catalog/standards/sist/4db325a6-dbdc-440e-a0df-The committee has decided that the contents of sthis publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed.
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC TS 62578:2015 © IEC 2015

INTRODUCTION

This revision of the technical specification IEC TS 62578 is necessary because active infeed converters (AIC) are a state of the art technology in power electronic products and will be of major importance in order to realize the "smart grid" and the "energy efficiency" initiatives.

AICs in industrial and domestic use are necessary to feedback energy from an energy source (e.g. solar panels, fuel cells or wind turbines) or from a motor load to the power supply network and make it available for other consumers instead of dissipating it as a waste-heat to the environment.

Dispersed power generating equipment uses AICs to synchronise their voltages and currents to the power supply network or to exchange electrical energy between energy storage devices such as batteries and consumers.

Utilities will require information on how to correctly apply the AICs in order to mitigate harmonics in the power supply network.

AICs can also be used to mitigate pre-existing harmonics in the supply system – information on this is of interest to utilities.

Different possible topologies of AICs are described together with their specific advantages.

Warning: The recommendations of maximum emission values for conducted emissions <150 kHz defined in this document are based on observations and experience gained from state of the art AICs operating today in most power supply networks together with other equipment without creating intolerable interference and should lead to an increased acceptance of using AICs. IEC TS 62578:2015

https://standards.iteh.ai/catalog/standards/sist/4db325a6-dbdc-440e-a0df-

Nevertheless it has to be highlighted that electromagnetic environment is subject to changes e.g. because of smart grid deployment and that emission limits that are currently under development by the IEC EMC Committees may be different to the maximum emission values recommended in this document.

This document is being issued in the Technical Specification series of publications (according to the ISO/IEC Directives, Part 1, 3.1.1.1) as a "prospective standard for provisional application" in the field of power electronics because there is an urgent need for guidance on the design and use of active infeed converters (AIC) today and in "smart grid environments".

It remains unclear during revision of this document, how and when the smart grid vision will be realized and to what extent in the future. AICs will be the "key link components" if several electrical energy storage devices or storage technologies and energy users are to be connected together and will interact under "smart grid behaviour" conditions. The power supply network may adapt its future characteristics compared to the state of the art while increasing the installed density of AIC.

POWER ELECTRONICS SYSTEMS AND EQUIPMENT –

Operation conditions and characteristics of active infeed converter (AIC) applications including design recommendations for their emission values below 150 kHz

1 Scope

This Technical Specification IEC TS 62578 describes the operation conditions and typical characteristics of active infeed converters (AIC) of all technologies and topologies which can be connected between the electrical power supply network (lines) a.c. side and a constant current or voltage type d.c. side and which can convert electrical power (active and reactive) in both directions (generative or regenerative).

Applications with active infeed converters are commonly used with the d.c. sides of adjustable speed power drive systems (PDS), uninterruptible power systems (UPS), active filters, photovoltaic systems, wind turbine systems, battery backed power management systems etc. of all voltages and power ratings.

Active infeed converters are generally connected between the electrical power supply network (a.c. side) and a current or voltage d.c. side, with the objective to avoid emitting low frequency harmonics (e.g. less than 1 kHz) by synthesizing a sinusoidal a.c. current. Some of them can additionally compensate the pre-existing harmonic distortion of a given supply side voltage. They are moreover able to control the power factor of a power supply network section by moving the electrical power (active and reactive) in both directions (generative or regenerative), which enables energy saving in the system and stabilizes the power supply voltage or enables coupling of renewable energy sources or electrical energy storage devices to the supply.

A practical and analytical approach for emission values for AICs in power supply networks is given, which is based on the latest results for line impedance values between 2 kHz and 9 kHz and withstand capability of capacitors connected directly to the supply.

This results in design recommendations for emission values below 150 kHz.

The following is excluded from the scope.

- Requirements for the design, development or further functionality of active infeed applications.
- Probability of interactions or influences of the AIC with other equipment caused by parasitic elements in an installation or caused by poor electronic design as well as their mitigations.
- "Overhead line" power supply networks because of lack of information (measurements) of their three phase impedances. This could be the subject for future editions.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 62578:2015 © IEC 2015 - 13 -

IEC 60050 (all parts), International Electrotechnical Vocabulary (available at www.electropedia.org)

IEC TR 60725:2012, Consideration of reference impedances and public supply network impedances for use in determining the disturbance characteristics of electrical equipment having a rated current \leq 75 A per phase

IEC 61800-3, Adjustable speed electrical power drive systems – Part 3: EMC requirements and specific test methods

IEC 61800-5-1, Adjustable speed electrical power drive systems – Part 5-1: Safety requirements – Electrical, thermal and energy

IEC 62040-1, Uninterruptible power systems (UPS) – Part 1: General and safety requirements for UPS

IEC 62103, Electronic equipment for use in power installations

IEC 61000-4-7:2002, Electromagnetic compatibility (EMC) – Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto IEC 61000-4-7:2002/AMD1:2008

CISPR 16-1-1, Radio disturbance and immunity measuring apparatus - Measuring apparatus

(standards.iteh.ai)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EC 60500 and the following apply 31011db5d210/iec-ts-62578-2015

3.1

active equalization of the power supply network AEP

ability of an AIC to enable and combine smart grid functionalities with a specific main application

Note 1 to entry: Specific main applications include:

- reduce or avoid emitting low frequency harmonics (e.g. less than 2 kHz) from the power supply network by synthesizing a sinusoidal line current
- contributes to controlling the reactive power of a power supply network
- exchanging the electrical power (active and reactive) in generative or regenerative modes
- stabilization of the power supply voltage and energy saving in the supply system
- exchanging electrical energy between power supply networks or other power generations applications like fuel cells and electrical energy storage devices
- coupling of decentralized power sources (e.g. from renewable energy) to the power supply network.

3.2

a.c. filter

filter consisting of passive components, such as inductors, capacitors and resistors connected to the a.c. side of a converter, designed to reduce the circulation of harmonic currents in the associated system

3.3

active filter

AIC operating as a filter to control the specific a.c. side harmonic and interharmonics voltages or currents usually without active power flow