

Edition 2.0 2017-06

TECHNICAL REPORT

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

AMENDMENT 1 **iTeh STANDARD PREVIEW** (standards.iteh.ai)

Specification for radio disturbance and immunity measuring apparatus and methods – <u>CISPR TR 16-4-4:2007/AMD1:2017</u> Part 4-4: Uncertainties, statistics and limit modelling of Statistics of complaints and a model for the calculation of limits for the protection of radio services

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number) text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications, Just Published

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

details all new publications released. Available online and 421 ft you wish to give us your feedback on this publication or also once a month by emailings://standards.iteh.ai/catalog/standardneed/further assistance, please contact the Customer Service d94c05559798/cispr-tr-16 Centre 0650@lecteb.017

Edition 2.0 2017-06

TECHNICAL REPORT

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

AMENDMENT 1 iTeh STANDARD PREVIEW (standards.iteh.ai)

Specification for radio disturbance and immunity measuring apparatus and methods – <u>CISPR TR 16-4-4:2007/AMD1:2017</u> Part 4-4: Uncertainties, statistics and limit modelling <u>T</u> Statistics of complaints and a model for the calculation of limits for the protection of radio services

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.100.10; 33.100.20

ISBN 978-2-8322-4409-8

Warning! Make sure that you obtained this publication from an authorized distributor.

FOREWORD

This amendment has been prepared by subcommittee CISPR H: Limits for the protection of radio services, of IEC technical committee CISPR: International special committee on radio interference.

The text of this amendment is based on the following documents:

DTR	Report on voting
CIS/H/313/DTR	CIS/H/319/RVC

Full information on the voting for the approval of this amendment can be found in the report on voting indicated in the above table.

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition or ANDARD PREVIEW
- amended.

A bilingual version of this publication may be issued at a later date.

CISPR TR 16-4-4:2007/AMD1:2017 https://standards.iteh.ai/catalog/standards/sist/09a573c1-307d-41be-81c9-

d94c05559798/cispr-tr-16-4-4-2007-amd1-2017

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

5.6.2.3 Probability factors

Number the first equation of this subclause as follows:

$$P = P_1 \times P_2 \times P_3 \times P_4 \times P_5 \times P_6 \times P_7 \times P_8 \times P_9 \times P_{10}$$
(35)

Add, at the end of 5.6.4.4, the following new subclauses:

5.6.5 Rationale for determination of CISPR limits in the frequency range below 30 MHz

5.6.5.1 General

With this subclause, a method for the estimation of disturbance limits for a given type of equipment is described. This approach can be applied for the frequency range below 30 MHz.

CISPR TR 16-4-4:2007/AMD1:2017 - 3 - © IEC 2017

For radiation coupling, dependence of the permissible disturbance field strength from the wanted signal μ_w , the signal-to-disturbance ratio R_p , and other influence factors can be estimated based on Equations (21) and (22) found in 5.5.

This model should be used by Product Committees to determine the disturbance limits measured on a EUT in standardized test sites. This model is considered suitable for point source magnetic field devices and not for distributed or complex systems.

Ten probability or influence factors P_1 to P_{10} have to be considered according to 5.6.2.3. However, for better alignment with terminology used for statistics the ten influence factors P_1 to P_{10} are further treated in their mean values as μ_{P1} to μ_{P10} . It shall be noted that the values for μ_{P1} to μ_{P10} can be used in logarithmic terms (i.e. in dB) only.

Taking into account Equation (22) we can write

where

$$E_{\text{Limit}} = \mu_{\text{i}} + t_{\beta}\sigma_{\text{i}} \tag{36}$$

Then taking equation (21) into account, noting that t_{β} = 0,84, and the limit becomes:

$$E_{\text{Limit}} = \mu_{\text{w}} - R_{\text{p}} + \mu_{\text{P1}} + \mu_{\text{P2}} + \mu_{\text{P3}} + \mu_{\text{P4}} + \mu_{\text{P5}} + \mu_{\text{P6}} + \mu_{\text{P7}} + \mu_{\text{P8}} + \mu_{\text{P9}} + \mu_{\text{P10}}$$

(standards.iteh.ai)

+
$$t_{\beta}\sigma_{i} - t_{\alpha}(\sigma_{P1}^{2} + \sigma_{P2}^{2} + \sigma_{P3}^{2} + \sigma_{P4}^{2} + \sigma_{P5}^{2} + \sigma_{P6}^{2} + \sigma_{P7}^{2} + \sigma_{P8}^{2} + \sigma_{P9}^{2} + \sigma_{P10}^{2})^{1/2}$$
 (37)

is the mean value of the permissible disturbance field strength at a specified E_{l imit} distance *d* from the disturbance source; CISPR TR 16-4-4:2007/AMD1:2017 is the minimum value of the wanted field strength at the edge of the service area of $\mu_{\rm W}$ the radio service concerned,798/cispr-tr-16-4-4-2007-amd1-2017 $R_{\rm p}$ is the minimum acceptable value of the signal-to-disturbance ratio (i.e. the protection ratio) at the receiver's antenna port or feeding point; is the mean value of the main lobes of the magnetic dipole radiation in the direction μ_{P1} of the victim receiver; is the standard deviation of P_1 ; σ_{P1} is the expected mean value when the directional receiving antenna has its maximum μ_{P2} pick-up in direction of the disturbance source; is the expected mean value when the victim receiver is stationary; μ_{P3} is the expected mean value when there is equipment generating a disturbing signal μ_{P4} on a critical frequency; is the expected mean margin when the relevant harmonic is below the limit value; μ_{P5} is the expected mean value when the type of disturbance signal generated will μ_{P6} produce a significant effect in the receiving system;

- $\mu_{\rm P7}$ is the expected mean value when the operation of the disturbance source is coincident with the receiving system;
- μ_{P8} is the expected mean value when the disturbance source is located in a distance to the receiving system within which interference is likely to occur;
- μ_{P9} is the expected mean value when the value of radiation at the edge of service area for the protected service just meets the limit for the RF disturbance;
- μ_{P10} is the expected mean value when buildings provide attenuation.

Equation (37) is valid for mean values of influence factors (given in dB) assuming a lognormal distribution of their figures. Notice that the latter may not be fulfilled for each factor in

(38)

each individual case. By inserting appropriate practical figures, Equation (37) can be used to estimate a limit $E_{l \text{ imit}}$ for the permissible disturbance field strength.

NOTE Within these calculations, 20 log has been utilized for distance elements and 10 log for the others, assuming power and not voltage.

5.6.5.2 Consideration and estimated values of μ_{P1} to μ_{P10}

5.6.5.2.1 Radiation pattern of the disturbance source (μ_{P1})

5.6.5.2.1.1 Consideration of μ_{P1}

The horizontal plane radiation pattern on a small purely magnetic antenna is described in dB unit by

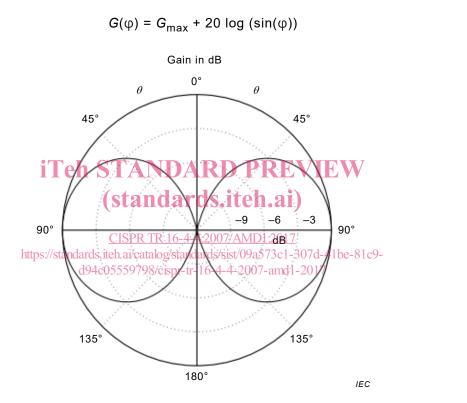


Figure 8 – horizontal plane radiation pattern on a small purely magnetic antenna

In the general case the victim may be in any possible direction with equal-probability. The mean value and standard deviation of the gain can be calculated by the following averages over half of the circle.

$$G_{\text{avg}} = Avg(G(\varphi)) \equiv \frac{1}{\pi} \times \int_{0}^{\pi} G(\varphi) d\varphi$$
(39)

$$\sigma_G^2 = Avg(G(\varphi)^2) - (Avg(G(\varphi))^2)$$
$$= \frac{1}{\pi} \int_0^{\pi} (G(\varphi))^2 d\varphi - G_{avg}^2$$
(40)

CISPR TR 16-4-4:2007/AMD1:2017 - 5 - © IEC 2017

Numerical calculation of Equations (39) and (40) gives the average gain $G_{avg} = G_{max} - 6.0 \text{ dB}$ and the standard deviation $\sigma_G = 7.9 \text{ dB}$, which lead to $\mu_{P1} = G_{max} - G_{avg} = 6 \text{ dB}$ and $\sigma_G = 7.9 \text{ dB}$

5.6.5.2.1.2 Estimation for the μ_{P1}

$$\mu_{P1} = 6 \text{ dB}, \sigma_{P1} = 8 \text{ dB}$$

5.6.5.2.2 Antenna gain of the victim to the disturbance source (μ_{P2}) (the directional receiving antenna have its maximum pick-up in direction of the disturbance source)

5.6.5.2.2.1 Consideration of μ_{P2}

In the frequency range below 30 MHz, a typical receiving antenna used with broadcast receivers is a rod antenna. Other antennas are also used. These antenna gains can vary to as much as -10 dB to 10 dB, however it can be assumed that 67 % of all antennas show a gain of within 3 dB of an isotropic antenna.

5.6.5.2.2.2 Estimation for the possible range of μ_{P2}

$$\mu_{P2}$$
 = -3 dB, σ_{P2} = 3 dB

5.6.5.2.3 Stationary receiver (#P3 NDARD PREVIEW

5.6.5.2.3.1 Consideration of *#*P3tandards.iteh.ai)

Below 30 MHz, it is likely that the victim receiver will be stationary; hence the value should be 0 dB. <u>CISPR TR 16-4-4:2007/AMD1:2017</u>

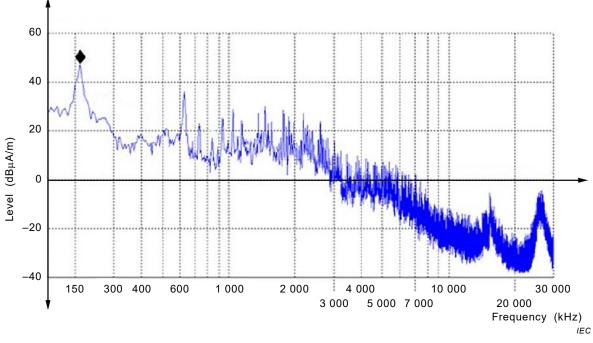
https://standards.iteh.ai/catalog/standards/sist/09a573c1-307d-41be-81c9-

5.6.5.2.3.2 Estimation for the possible range of $\mu_{P3}^{007-and1-2017}$

$$\mu_{P3} = 0 \text{ dB}, \sigma_{P3} = 0 \text{ dB}$$

5.6.5.2.4 Equipment generating a disturbing signal at a critical frequency and relevant harmonics (μ_{P4})

5.6.5.2.4.1 Consideration of μ_{P4}


For the source of the magnetic disturbance from monitors and plasma TVs, the issue will appear for the fundamental frequency and the harmonics. Assuming the fundamental emission from the disturbance source is at 250 kHz and its harmonics will occupy approximately in the ratio of 5:1. Based upon a variation of \pm 25 kHz, giving a value of 50 kHz (7 dB).

For the source of the magnetic disturbance from induction cooking equipment, the issue will appear from the fundamental frequency and the harmonics. Assuming the fundamental emission from the disturbance source is at 50 kHz and its harmonics will occupy approximately in the ratio of 2:1. Based upon a variation of \pm 12,5 kHz, giving a value of 25 kHz (3 dB).

NOTE 1 The values below were derived from 10 log (1/5) = -7 dB and 10 log (1/2) = -3 dB hence the mean values 5 dB and the range of 2 dB.

NOTE 2 Other sources of disturbance may be from electrical car charging stations, phone charging systems and these are estimated to give similar values.

We have assumed no frequency dependency relevant to the limits.

A typical response of a source of magnetic field disturbance is present in Figure 9.

Figure 9 – typical source of magnetic field disturbance (standards.iteh.ai)

5.6.5.2.4.2 Estimation for the possible range of μ_{P4}

<u>CISPR TR 16-4-4:2007/AMD1:2017</u> https://standards.it//p4it=a5.ldBstaRangeiop2a=72cdBi07d-41be-81c9d94c05559798/cispr-tr-16-4-4-2007-amd1-2017

5.6.5.2.5 Margin that the relevant harmonics are below the limit value (μ_{P5})

5.6.5.2.5.1 Consideration of μ_{P5}

This value has been covered in μ_{P4} .

5.6.5.2.5.2 Estimation for the possible range of μ_{P5}

This value has been covered in μ_{P4} .

5.6.5.2.6 Expected mean value that the type of disturbance signal generated will produce a significant effect in the receiving system (μ_{P6})

5.6.5.2.6.1 Consideration of μ_{P6}

In the frequency range below 30 MHz, since the bandwidth of the unwanted signal and bandwidth of the receiver are of similar values, μ_{P6} should be set to 0 dB.

For the example of plasma TVs and induction cookers in the frequency range below 30 MHz, typically since the bandwidth of the disturbance source is greater than the bandwidth of the receiver, μ_{P6} should be set to 0 dB.

NOTE AC mains cable is not an issue of interference to radio receivers at the frequency below 30 MHz because this aspect is already covered by the conducted emission requirement defined in the standard.

5.6.5.2.6.2 Estimation for the possible range of μ_{P6}

CISPR TR 16-4-4:2007/AMD1:2017 © IEC 2017

5.6.5.2.7 Expected mean value that the operation of the disturbance source is coincident with the receiving system operation of the disturbance source (μ_{P7})

5.6.5.2.7.1 Consideration of μ_{P7}

In the case that a receiver is operated for 24 hours, from the typical sources in 24 hours per day, plasma TV is 8 hours, PV Inverter 8 hours and induction cookers 2 hours operated.

NOTE The estimated values given in 5.6.6.2.7.2 were derived by 10 log (time of operation (hours) /24).

5.6.5.2.7.2 Estimation for the possible range of μ_{P7}

 μ_{P7} = 6,5 dB, Range σ_{P7} = 3,5 dB

5.6.5.2.8 The disturbance source is located in a distance to the receiving system within which interference is likely to occur (μ_{PR})

5.6.5.2.8.1 Consideration of μ_{P8}

The limit of the disturbance is specified for the test site with a normative fixed measurement distance d. In practice, the actual distance r between the disturbance source and the victim is usually quite different when the victim is used as intended.

The normative measurement distance d is 3 m. The ratio of the two distances r and ddetermines the additional attenuation.

(standards.iteh.ai)

The estimated value μ_{P8} usually increases the permissible limit and has to be added on the right hand side of Equation (37). <u>CISPR TR 16-4-4:2007/AMD1:2017</u>

https://standards.iteh.ai/catalog/standards/sist/09a573c1-307d-41be-81c9-5.6.5.2.8.2 Estimation for the possible range of µp87-and 2017

The value of μ_{P8} is calculated by:

$$\mu_{\rm P8} = x \times 20 \log (r / d) \tag{41}$$

where

- r is the actual distance between source and victim;
- is the measurement distance: d
- is the wave propagation coefficient, typical value to be determined based upon Annex х B

The estimated distance has to take into account the average distance for the intended use of the radio equipment. Inserting practical distances into Equation (41) will provide the possible range of $\mu_{\rm D8}$.

5.6.5.2.9 The value of radiation at the edge of service area for the protected service (μ_{P9})

5.6.5.2.9.1 Consideration of μ_{PQ}

Due to propagation complexities related to the transmission properties relating to this frequency range (including solar storms, variation of the reflecting condition at the ionosphere and the time of day) it is difficult to define actual coverage areas of the radio service. There will still be areas were the service will have sufficient signals and other areas where there will be insufficient. Hence a basic approximation could be based upon a simple circularly response and the ratio between the two different coverage areas.

- 7 -

5.6.5.2.9.2 Estimation for the possible range of μ_{P9}

 μ_{P9} = 3 dB, Range σ_{P9} = 3 dB

- 8 -

5.6.5.2.10 The expected mean value that buildings provide attenuation of the building (μ_{P10})

5.6.5.2.10.1 Consideration of μ_{P10}

In this frequency range the worst case attenuation of buildings will be 0 dB.

NOTE Depending on the situation, building attenuation can be taken into account. Any attenuation may impact both the reception of the radio service and the amount of interference source observed. Hence this may need to be taken into account with the performance of the receiving antenna.

5.6.5.2.10.2 Estimation for the possible range of μ_{P10}

 μ_{P10} = 0 dB, Range σ_{P10} = 0 dB

5.6.6 Model for limits for the magnetic component of the disturbance field strength for the protection of radio reception in the range below 30 MHz

5.6.6.1 General

Recently, new electric or electronic devices having unintentional emissions below 30 MHz were introduced in the market. As the classical examples of these devices, there are plasma TV sets, power line communications devices, wireless power transfer, induction cooking devices, and so on. As the devices have been using increasingly, it is required to establish an appropriate model for deriving radiation limits in order to protect existing radio services at frequencies below 30 MHz. <u>CISPR TR 16-4-42007/AMD12017</u>


https://standards.iteh.ai/catalog/standards/sist/09a573c1-307d-41be-81c9-

This document contains statistics of complaints and mathematical models for the calculation of electric field limits related to the protection of radio services without the consideration of magnetic radiation within the near field region. Hence, development of other analytical models is required for the derivation of radiation limits on the devices having magnetic disturbances.

NOTE Other organisations also working within the area including CEPT and ITU-R.

5.6.6.2 Model for magnetic field limits below 30 MHz

This model is established for calculation magnetic field limits required for the protection of radio services against interference from various types of magnetic field sources using below 30 MHz. This method for calculation of magnetic field limits for protection of radio services below 30 MHz is depicted in Figure 10.

-9-

iTeh STANDARD PREVIEW

Key

magnetic dipole moment (standards.iteh.ai) m

 $E_{\rm ir}$ permissible interference electric field of victim receiver

permissible interference magnetic field of victim receiver. bttps://standards.ifen.av/catalog/standards/sist/09a573c1-307d-41be-81c9- $H_{\rm ir}$

effective radiated power of interference source at distance r from victim receiver $P_{\rm is, ERP}$

magnetic field limits for interference source at measuring distance d, i.e. at the position of the antenna H_{limit} of the measuring equipment

Figure 10 – Model for magnetic field limit at measuring equipment

The permissible interference electric or magnetic field (E_{ir} or H_{ir}) of victim receiver can be derived from a method considering noise level or a method considering signal to disturbance ratio $(R_{\rm P})$.

The method considering noise level is as follows:

 E_{noise} (dBµV/m) of a victim service is corrected for the bandwidth of the victim receiver:

$$E_{\text{noise}} = E_{\text{noise},b} + 10 \log \left(b_{\text{victim}} / b_{\text{noise}} \right)$$
(42)

where

is the measuring bandwidth of noise (kHz); b_{noise}

is the bandwidth of victim (kHz); **b**_{victim}

is the electric field strength of noise from Recommendation ITU-R P.372 ($dB\mu V/m$). E_{noise,b}

NOTE $E_{noise,b}$ is defined by an ITU-R document as the background Gaussian noise level (excluding impulse and burst noises), assuming the reception with a loss-less omni-directional antenna and an ideal receiver. In the case that the antenna and feeder losses or receiver noise cannot be negligible, reference noise level should be defined by the system noise level.

In case of broadband interference, the bandwidth ratio BWR (dB) should be included to calculate the permissible interference electric field E_{ir} (dBµV/m):