INTERNATIONAL STANDARD

First edition 1996-09-01

Safety of machinery — Laser processing machines — Safety requirements

iTeh STANDARD PREVIEW Sécurité des machines — Machines à laser — Prescriptions de sécurité (standards.iteh.ai)

<u>ISO 11553:1996</u> https://standards.iteh.ai/catalog/standards/sist/43cfd494-c1a0-4532-8356-60bb7433cd19/iso-11553-1996

Contents

1	Scope 1
2	Normative references 1
3	Definitions 1
4	Hazards 2
4.1	Inherent hazards 2
4.2	Hazards created by external effects (interferences) 3
4.3	Hazards covered by this International Standard 3
5	Safety requirements and measures
5.1	General requirements 3
5.2	Risk assessment
5.3	Implementation of corrective measures
6	Verification of safety requirements and measures 6
7	Information for user (standards.iteh.aj)
8	Labelling <u>ISO 11553:1996</u> 7
Annexes 60bb7433cd19/iso-11553-1996	
Α	Guards
в	Potential hazards
С	Protection against other hazards 11
D	Bibliography 12

Page

Printed in Switzerland

[©] ISO 1996 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

(International Standard ISO 11553 was prepared by Technical Committee ISO/TC 172, Optics and optical instruments, Subcommittee SC 9, Electro-optical systems, in collaboration with CEN/TC 123, Lasers and laser related equipment, and was correlated with IEC/TC 76. https://standards.iteh.ai/catalog/standards/sist/43ctd494-c1a0-4532-8356-

Anhex4A3torms an lintegral part of this International Standard. Annexes B, C and D are for information only.

Introduction

The Machinery Safety Directive issued by the Council of the EEC outlines essential and mandatory requirements that must be met in order to ensure that machinery is safe. In response, CEN/CENELEC initiated a programme to produce safety standards for machines and their applications. This International Standard is one in that series.

It has been prepared as a harmonized standard to provide a means of conforming with the essential safety requirements of the Machinery Directive and associated EFTA Regulations.

The extent to which hazards are covered is indicated in the scope. Machinery should comply as appropriate with ISO/TR 12100 for hazards which are not covered by this International Standard.

It is applicable to machines using laser radiation to process materials. The purpose of this International Standard is to prevent injuries to persons

- by listing potential hazards generated by machines containing lasers;

<u>ISO 11553:1996</u>

- by specifying safety measures:/andiverificationstregessarylfors/reducting-cla0-4532-8356the risk caused by specific hazardous conditions/H33cd19/iso-11553-1996
- by providing references to pertinent standards;
- by specifying the information which is to be supplied to the users so that they can establish proper procedures and precautions.

Safety of machinery — Laser processing machines — Safety requirements

1 Scope

This International Standard describes hazards generated by laser processing machines, as defined in 3.2, and specifies the safety requirements relating to radiation hazards and hazards generated by materials and substances. It also specifies the information to be supplied by manufacturers of such equipment.

iTeh STANDARD IEC 204-1 1992; Electrical equipment of industrial It is not applicable to laser products, or equipment machines — Part 1: General requirements. containing such products, which are manufactured **S.iteh.ai**) solely and expressly for the following applications: IEC 825-1:1993, Safety of laser products — Part 1: **IEC 825-1:1993**, Safety of laser products — Part 1: **IEC 825-1:1993**, Safety of laser products and user's

- photolithography;

ISO 11553:1995 Guipfinent Classification Guide https://standards.iteh.ai/catalog/standards/sist/43cld494-c1a0-4532-8356-60bb7433cd19/iso-11553-1996

- stereolithography;
- holography;
- medical applications (per IEC 601-2-22);
- data storage.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 3864:1984, Safety colours and safety signs.

ISO 11252:1993, Lasers and laser-related equipment — Laser device — Minimum requirements for documentation.

3 Definitions

For the purposes of this International Standard, the definitions given in ISO/TR 12100-1 and IEC 825-1 and the following definitions apply.

ISO/TR 12100-1:1992, Safety of machinery — Basic concepts, general principles for design — Part 1:

ISO/TR 12100-2:1992, Safety of machinery - Basic

concepts, general principles for design - Part 2:

Basic terminology, methodology.

Technical principles and specifications.

3.1 machine: Assembly of linked parts or components, at least one of which moves, with the appropriate actuators, control and power circuits, etc., joined together for a specific application, in particular for the processing, treatment, moving or packaging of material. [ISO/TR 12100]

3.2 laser processing machine: Machine in which (an) embedded laser(s) provide(s) sufficient energy/power to melt, evaporate, or cause a phase transition in at least a part of the workpiece, and which machine has the functional and safety completeness to be ready-to-use.

3.3 (preventive) maintenance: Performance of those adjustments or procedures specified in user information, which are intended to be performed by the user for the purpose of assuring the intended performance of the product.

NOTE 1 Examples include replenishment of consumables and cleaning.

3.4 manufacturer: Individual or organization that assembles the laser processing machine. Where a laser processing machine is imported, the importer assumes the duties of the manufacturer. An individual or organization that is responsible for modification of a machine is regarded as a manufacturer.

3.5 modification: Change to the machine which makes it capable of processing materials in a manner which differs from the original design, or which makes it capable of processing materials different from what was envisaged in the original design, or which affects the safety characteristics of a machine.

3.6 process zone: Area where the laser beam interacts with the material of the workpiece.

3.7 production: Phase during which the machine is used as intended, including the following operations:

- loading and unloading of parts and/or materials to

be processed; this loading/unloading can be fully DA

4.1 Inherent hazards

The following hazards (see ISO/TR 12100) may be generated by a laser processing machine:

- mechanical hazards;
- electrical hazards;
- noise hazards:
- thermal hazards:
- vibration hazards;
- radiation hazards; examples include

hazards generated by direct or reflected laser beam,

hazards generated by ionizing radiation.

hazards generated by collateral (UV, microwave, etc.) radiation produced for example by flash lamps, discharge tubes, or RF-power Sources, VIII V

or partly automated or manual; (standards.ithaardsigenerated by secondary radiation re-- processing during which the laser beam works emitted by targets due to beam effect (the alone or in conjunction with other tools. ISO 11553:1998 wavelength of the re-emitted radiation may be

https://standards.iteh.ai/catalog/standards/sist/different from4that 805 the beam); **3.8 service (corrective maintenance):** Performances: Perf manufacturer's service instructions which may affect

NOTE 2 Examples include fault diagnosis, equipment strip-down and repairing.

any aspect of a product's performance.

3.9 subassembly: Constituent part needed for proper performance of the laser processing machine. A laser processing subassembly can be of any laser class in accordance with IEC 825-1.

3.10 workpiece: The material intended to be processed; the target of the laser beam.

Hazards 4

The following subclauses outline areas of concern associated with materials processing with lasers.

examples include

hazards due to products which are used in the machine (for example laser gases, laser dyes, lasing gases, solvents),

hazards resulting from interaction between the beam and the material (for example fumes, particles, vapours, debris).

fire or explosion,

hazards from associated gases (see for example 5.3.3) used to assist laser target interactions and from any fumes that are produced; these hazards include explosion, fire, toxic effects and oxygen depletion;

- hazards generated by neglecting ergonomic principles in machine design.

4.2 Hazards created by external effects (interferences)

Power conditions and the environment in which the machine operates may cause the machine to malfunction, thus giving rise to hazardous conditions and/or making it necessary for someone to intervene within hazard zones.

Additional environmental interferences include:

- temperature;
- humidity;
- external shock/vibration;
- vapours, dust or gases from the environment;
- electromagnetic/radio frequency interference;
- source voltage interruption/fluctuation;
- insufficient hardware/software compatibility and integrity.
 iTeh STANDARD

- a) each manufacturer shall comply with the safety requirements and measures stipulated in this clause;
- b) the manufacturer of an installed machine shall be responsible for the compliance of the whole machine, including subassemblies.

NOTE 3 These requirements apply even if the manufacturer and the customer/user are the same legal entity.

These measures shall take into account each hazard listed in clause 4, the results of the hazard analysis and information in annexes B, C and D.

5.2 Risk assessment

A risk assessment shall be performed

- a) for all phases of machine "life" (as applicable); for examples see ISO/TR 12100-1;
- b) after each modification of the machine by the person or organization responsible for the modifi-

(standards.ite iskassessment includes but is not limited to

4.3 Hazards covered by this International Standard

ISO 11553:1996) hazards listed in 4.1 and 4.2;

Only radiation hazards, and hazards generated by the black of the solution of

dealt with in this International Standard. Information concerning other hazards is given in annex B.

5 Safety requirements and measures

5.1 General requirements

Manufacturers shall ensure the safety or laser processing machines by:

- hazard identification and analysis;
- implementation of safety measures;
- certification and verification of the safety measures;
- provision of appropriate information for the user.

Based on the hazard identification (see 5.2), appropriate safety measures shall be incorporated into the laser processing machine by design and manufacture.

The following requirements shall be satisfied:

the laser system,

the laser beam path/beam delivery system,

the process zone;

c) "interferences" listed in 4.2.

The results of the risk assessment shall be duly documented.

5.3 Implementation of corrective measures

Safety measures shall be incorporated in the machine by design and manufacture as specified in 5.3.1 to 5.3.3.

5.3.1 Protection against laser radiation hazards

5.3.1.1 General

The possibility that people be exposed to levels of laser radiation exceeding the accessible emission limit (AEL) for Class 1 shall be eliminated during production (normal or otherwise). Access to radiation in excess of AEL for Class 3A shall be eliminated for maintenance. To satisfy this, the following requirements shall be met.

- a) Unauthorized human access to a danger zone shall be prevented by engineering measures as stipulated in IEC 825-1 and ISO/TR 12100.
- b) If human presence in a danger zone is unavoidable while the machine is functioning (for example during servicing), the machine shall be equipped with means for direct control of machine motion, beam direction and beam stop (see 5.3.2.5).
- c) The design of protective devices, such as shutters, guards, beam dissipation devices, trip devices and deterring/impeding devices shall meet the requirements specified in IEC 825-1 and ISO/TR 12100. In cases of ambiguity or difference of interpretation between ISO/TR 12100 and IEC 825-1, the first two sentences of 5.3.1.1 shall be definitive.
- d) One and the same protective device may be used to provide simultaneous protection against more iTeh STANDAB Servicing takes place in danger zones to which than one hazard.

access is controlled in the same manner as during In addition to the requirements of c), guards shall ards production (for example interlocked cover). comply with requirements specified in annex A¹¹.

c) Servicing takes place in a danger zone (for **ISO** 11 example with open guards that are normally closed during production) but accessible laser 5.3.1.2 Protection during production ards.iteh.ai/catalog/standards/ 60bb7433cd19/isoradiation does not exceed the AEL for Class 1. The principal danger zone is usually the process zone.

At the process zone, one or more guards shall prevent human access during normal production to levels of laser radiation higher than the AEL for Class 1.

The hazard analysis shall indicate which type of guarding - local protection or peripheral protection - is to be used.

Local protection is a method of guarding to reduce laser radiation and associated optical radiation to a safe level — for example by means of a nozzle or a small guard fitted close to the beam focus at the workpiece — without totally enclosing the workpiece. the workpiece support and/or machine motion system.

Peripheral protection is a method of guarding to reduce laser radiation and associated optical radiation to a safe level by means of one or more distant guards (for example a protective enclosure) that enclose the workpiece, workpiece support and, usually, most of the machine motion system. The sort of protection will depend on several factors, for instance:

d) Servicing takes place in danger zones, for example because opening of guards (normally closed during production) is necessary. In this case accessible laser radiation exceeds the AEL for Class 1. [See 5.3.1.1 b).]

The manufacturer shall indicate the class of accessible laser radiation and recommended safety procedures for each of these situations (as applicable).

5.3.1.4 Protection during teaching, programming and program verification

During teaching, path programming and program verification, human access to laser radiation exceeding the AEL for Class 3A should be prevented. If this condition cannot be met, the same requirements as for servicing shall apply.

5.3.2 Control means and circuits

Control means and circuits shall comply with IEC 204-1.

- the direction (fixed or variable) of beam propagation with regard to the workpiece;
- the type of machining operation to be realized (cutting, welding, etc.);
- the material and shape of the workpiece to be processed;
- the workpiece support;
- the visibility of the process zone.

5.3.1.3 Protection during service

During service procedures, human access to laser radiation exceeding the AEL for Class 1 is sometimes unavoidable. Machines shall therefore be designed and appropriate safety measures provided, with respect to the following four situations (listed in order of preference):

a) Servicing takes place outside danger zones.

¹⁾ Annex A is valid until a standard on guards prepared by IEC/TC 76 is published.

5.3.2.1 Start/stop controls

The machine stop control shall stop the machine (i.e. switch off actuators) and either isolate the laser beam or deactivate laser beam generation. The laser stop control shall deactivate beam generation.

Separate control devices may be provided for the laser system and the rest of the machine.

5.3.2.2 Emergency stop control

The emergency stop control shall comply with IEC 204-1.

The emergency stop control shall

- deactivate laser beam generation and automatically position the laser beam stop;
- deactivate the machine (i.e. actuator power off), and
- switch off the laser power supply and discharge when the beam all stored energy.

If a laser device is used for several machines which situate easily accessible means shall be provided for work separately from one another, the emergency locking the laser beam stop in the closed position. A stop control located on one of the machines Schall 53:199key-control shall be permitted for this purpose. work as above, or https://standards.iteh.ai/catalog/standards/sist/43cfd494-c1a0-4532-8356-

- deactivate the relevant machine (i.e. actuator

isolate the laser beam optical path leading to the relevant machine.

5.3.2.3 Interlocks and guard control

power off), and

When guards (per ISO/TR 12100) are opened or displaced, or safety interlocks are defeated, automatic operation of the machine shall be impossible.

If the design of the machine requires occasional procedures to be carried out with one or more guards open (normally closed during production) and with power supplied to the machine actuators, then an operating mode shall be provided to make overriding of the guard(s) possible.

The selection of this operating mode shall

- a) be by means of a lockable mode selector;
- b) automatically isolate the laser beam;
- c) prevent automatic operation of the machine.

A key-operated switch may be used as the mode selector.

Discrete, deliberate, interlock override mechanisms on removable access panels with safety interlocks (defeatable safety interlocks) shall meet the requirements of IEC 825-1 for such override mechanisms.

The operation mode selected shall be clearly signalled. After this operation mode has been selected it shall be possible to override the beam isolation (i.e. "open" the beam stop) for service procedures.

5.3.2.4 Provisions for isolation of the laser beam

Isolation of the laser beam shall be achieved by blocking and/or deviating the laser beam to prevent it from entering the beam delivery system.

Beam isolation shall be accomplished using a fail-safe laser beam stop (shutter) located inside or immediately outside the laser. A position indicator shall show when the beam stop is in the closed position (i.e. preventing the beam from proceeding).

60bb7433cd19/iso-115Additional beam stops may be provided by the ma-(i.e. actuator chine manufacturer, for example in the following situations:

- a) when there are maintenance/cleaning areas present along the beam path (beam delivery system);
- b) when one laser device supplies more than one beam path, and there is a need for human intervention in one path while the beam is pursuing one of the other paths.

5.3.2.5 Device for protection when people are inside a danger zone

As stated in ISO/TR 12100-2:1992, subclause 4.1.4, for situations (except production) when human presence in a danger zone is necessary, the machine shall be provided with a device for control of machine motion and laser beam emission, to be operated by the person inside the danger zone. The following requirements shall apply to this device:

 the device shall be provided with a hold-to-run control which, when released, prevents access to radiation in excess of AEL for Class 3A;

- when placed under the control of this device, all machine motions and laser beam emission shall be controllable only from this device;
- if it is possible to enter the danger zone through a door, then it shall be possible to start laser emission using this device only after closing such doors.

5.3.3 Protection against hazards generated by materials and substances

The manufacturer shall inform the customer/user of the materials that are intended to be processed with the machine. The manufacturer shall supply suitable means for capturing the fumes and airborne particles from these materials. The manufacturer shall provide information on the limit values for these materials and for the fumes and particulate matter generated by machining these materials.

NOTE 4 The safe removal and disposal of fumes and particulate matter from the machine according to local, national or regional Threshold Limit Values are the responsibility of the customer/user.

maintenance and servicing procedures to the customer/user.

- b) The manufacturer shall inform the user as to the responsibilities of the user relating to the removal and/or disposal of fumes and particulate material from the machine.
- c) The manufacturer shall provide information on the limit values for the materials intended to be processed and for the fumes and particulate matter generated by machining these materials. The manufacturer shall also provide general information about equipment for removal of fumes and particulate matter.
- d) The manufacturer shall make available suitable safety-related training to the user.
- e) The manufacturer shall advise users of known potential hazards by providing a prominently placed warning statement in the user instructions and/or operator's manual.

bility of the customer/user. **The STANDAR** The following items should be considered for inclusion in the user's instructions and/or operated gases (for example oxygen) used to assist **The following items should be considered for** inclusion in the user's instructions and/or operator's manual:

laser/workpiece interactions and from any fumes that 1) IEC 825-1 specifies protective measures for are produced. Related hazards include explosion, fire ISO 11553:1996 the primary laser radiation. toxic effects, oxygen excess and oxygen depletiontalog/standards/sist/43ctd494-c1a0-4532-8356-

Additional information is given in annex B.

6 Verification of safety requirements and measures

General conformance with the requirements of this International Standard, particularly those relating to the presence and positioning of guards and control devices, shall be confirmed by visual inspection.

Correct functioning of control devices shall be verified according to functional tests specified by the manufacturer.

Verification procedures relating to laser radiation levels shall conform to IEC 825-1:1993, clause 9.

7 Information for user

In addition to the requirements of IEC 825-1, IEC 204-1, ISO 11252 and ISO/TR 12100-2, the following requirements shall be satisfied.

a) The manufacturer shall supply pertinent safetyrelated documentation and data, including correct

60bb7433cd19/iso-1155<u>THe%inimum</u> requirement, in the case of potential exposure by a class 3B and class 4 product, is to wear protective eyewear rated for the laser power and wavelength.

2) Some operations, for example welding, may produce intense UV and visible radiation.

<u>The minimum</u> requirement, in the case of potential exposure to this kind of radiation, is to wear appropriate protective eyewear (for example a welding mask).

3) Most material processing applications produce fumes and particles. When processing metals, heavy metal vapours may be produced. These can harm body tissues and organs. When processing plastics, toxic or lethal by-products can be produced.

<u>The minimum</u> requirement, before starting the process, is to

 be familiar with the material to be processed, know what by-products may result, assess their risk to health and

6

- employ appropriate measures to prevent or control the risk; such measures will normally require positive exhaust of fumes from the process zone and adequate purification before exhaust gases are returned to the atmosphere away from personnel;
- inform, instruct and train operators about the risks, and the precautions to be taken;
- where necessary, monitor the exposure of operators and carry out an appropriate form of surveillance of their health in compliance with local regulations;
- consult a pertinent authority to find out what national, state and/or local regulations must be satisfied before exhaust gases are returned into the atmosphere.
- 4) Dangerous voltage/current is used to power the laser and its associated equipment. Power RD supplies can contain capacitor banks which may remain charged for some time after site of the danger zones without exposing anyone to an switching the equipment off.

The minimum requirements in the case of re-553:1997 he colour, size and print style of the labels shall pair is to follow the rules for electrical safetyards/sist on the style of the labels shall practices. 60bb7433cd19/iso-11553-1996

8 Labelling

Local or regional laws for labelling shall be adhered to.

The machine shall be labelled to indicate

- the name and address of the laser processing machine manufacturer;
- the manufacturing date;
- the series or type of machine (if appropriate) and serial number (if any).

The labels shall satisfy the following requirements:

- colours, sizes and print styles of laser radiation warning labels shall be as described in IEC 825-1;
- in addition to the labelling required by IEC 825-1, the laser processing machine shall, after installation, carry other pertinent cautionary and warning labels (for example: "TOXIC FUMES/PARTICLES MAY BE GENERATED BY THIS MACHINE"). The size and location of the labels shall be such as to make the appropriate labels legible from outside the danger zones without exposing anyone to any