## INTERNATIONAL STANDARD



First edition 1998-06-15

# Paper and board — Determination of curl using a single vertically suspended test piece

Papier et carton — Détermination du tuilage au moyen d'une éprouvette unique suspendue verticalement

### iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11556:1998</u> https://standards.iteh.ai/catalog/standards/sist/a0d4f062-3d29-4f6b-b0ed-61746c297046/iso-11556-1998



#### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

#### iTeh STANDARD PREVIEW

International Standard ISO 11556 was prepared jointly by Technical Committee ISO/TC 6, *Paper, board and pulps*, Subcommittee SC 2, *Test methods and quality specifications for paper and board*.

ISO 11556:1998

Annexes B and C form anhintegraldpartitof athisal Internationalst Standard 3d29-4f6b-b0ed-Annexes A, D and E are for information only. 61746c297046/iso-11556-1998

© ISO 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch

X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

#### Introduction

The presence of curl in paper and board may be detrimental to its processing, and therefore there is a need for its measurement. Curl can be inherent in the paper when manufactured, or can be developed in the sheet during its use.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11556:1998</u> https://standards.iteh.ai/catalog/standards/sist/a0d4f062-3d29-4f6b-b0ed-61746c297046/iso-11556-1998

## iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11556:1998</u> https://standards.iteh.ai/catalog/standards/sist/a0d4f062-3d29-4f6b-b0ed-61746c297046/iso-11556-1998

## Paper and board — Determination of curl using a single vertically suspended test piece

#### 1 Scope

This International Standard defines the terms used in curl measurement and gives a procedure for determining curl using a vertically suspended test piece.

This International Standard may be used to measure any curl when

- the curl formed approximates the arc of a circle;
- the curl is stable enough to remain constant during the time required to cut the test pieces and make the measurement. This primarily includes curl in paper or board as received, or after exposure to a constant climatic condition, such as a test room or print shop.

NOTE 1 The choice of conditioning climate and conditioning time depends on the purpose of the ISO 11556:1998 https://standards.iteh.ai/catalog/standards/sist/a0d4f062-3d29-4f6b-b0ed-

NOTE 2 For papers coated on one side or gummed-label papers, a period of at least 24 h, after production, should be allowed to permit the paper to stabilize before any curl tests are done.

#### 2 Normative references

The following standards contains provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 186:1994, Paper and board — Sampling to determine average quality.

ISO 187:1990, Paper, board and pulps — Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples.

#### **3 Definitions**

For the purposes of this International Standard, the following definitions apply.

**3.1 curl** : A deviation from a flat surface. Its measurement has three major components. Its magnitude, the angle of the curl axis in relation to the paper or board's machine direction, and the side towards which the sheet curls.

**3.1.1 magnitude :** Measured deviation of a test piece from a flat surface. It is expressed as the reciprocal of the radius of curvature of the curled test piece with units of m<sup>-1</sup>.

NOTE 1 The radius of curvature for the curled test piece is the distance from the arc to the centre of the circle of which the arc is a part. The reciprocal radius (1/R) has a value of zero for a flat sheet.

NOTE 2 Curl characteristics of paper and board are time dependent and the magnitude of any curl displayed may be transient.

**3.1.2 angle of curl axis** ( $\emptyset$ ) (see annex A) : Angle between the axis of the curl and the machine direction of the paper or board, viewed from the concave side. For a curl that has its axis perpendicular to the machine direction,  $\emptyset = 90^{\circ}$ ; for a curl that has its axis parallel to the machine direction,  $\emptyset = 0^{\circ}$ . When the axis of the curl is neither perpendicular nor parallel to the machine direction, it is sometimes referred to as 'diagonal curl' (occasionally as 'asymmetric curl' or 'twist curl' or 'warp curl'). For diagonal curl, if the machine direction is positioned in a clockwise direction from the axis of the curl, this is deemed as a positive (+) rotation, but if it is in a counter-clockwise direction, then this is deemed as a negative (-) rotation. The angle of curl axis can be positive or negative between 0° and 90°.

NOTE — Note that the rotational direction in a diagonal curl is reported as being clockwise (+) or counter clockwise (-) <u>from the axis of the curl to the machine direction, and not from the machine direction to the axis of the curl.</u>

3.1.3 side towards which the paper or board curls (see annex A) : Concave side.

**iTeh STANDARD PREVIEW 3.2 induced curl :** Induced curl is the change in curl, as defined in 3.1, caused by some treatment to

one or both sides of the paper or boards A curfus often induced in a test piece to indicate the processability of a paper or board in an end-use situation.

#### ISO 11556:1998

**3.3 double curl** : Double curl (sometimes referred to as "flipper curl") is a form of curl which tends to alternate between the two sides with light manipulation of the sheet. This tendency is a phenomenon which may be described as two curl patterns that are finely balanced within the same sheet of paper or board.

#### 4 Principle

Test pieces of paper or board are exposed to the desired test environment. The curl is measured with the test pieces suspended such that the axis of the curl is vertical.

#### **5** Apparatus

**5.1 A device to cleanly cut out test pieces to a set diameter or size**. For circles, the preferred diameter is 112,8 mm  $\pm$  0,1 mm (100 cm<sup>2</sup>). For square test pieces, the preferred size is (100 mm x 100 mm)  $\pm$  0,1 mm.

NOTE — Circular and square laboratory cutters to produce 100 cm<sup>2</sup> test pieces are commercially available for sheet grammage determinations.

#### 5.2 A device for supporting the test piece during measurement, see annex B.

**5.3** A device for measuring the chord and chord-to-arc distance to within 0,5 mm (for example a modified engineer's vernier calliper, see annex C).

#### 5.4 A device for measuring the angle of curl accurately to within 1°.

NOTE — Automated methods of determining the curl magnitude and the angle of the curl axis may be used provided they are at least as accurate as the method described in this International Standard.

#### 6 Sampling

If a consignment of paper or board is being evaluated for curl, select the sample in accordance with ISO 186. Protect the sample from moisture change if the curl is to be measured as received.

NOTE — After sampling, care should be taken to ensure that all samples are kept in the same relative orientation.

#### 7 Preparation of test pieces

Select undamaged specimens free from folds or wrinkles, and preferably free from watermarks. In the areas from which the test pieces will be cut, lightly mark the machine direction, if possible on the same side of each test piece. When marking the test piece, take care not to make indentations which may affect the curl. This side of the test piece will then be referred to as the 'marked side'. Cut ten test pieces, one at a time, with the machine direction marks lying along the centre line of the test piece.

Circular test pieces are preferred. However, <u>square\_test\_p</u>ieces conforming to the dimensions given in 5.1 are also acceptable <a href="https://standards.iteh.ai/catalog/standards/sist/a0d4f062-3d29-4f6b-b0ed-">https://standards.iteh.ai/catalog/standards/sist/a0d4f062-3d29-4f6b-b0ed-</a>

61746c297046/iso-11556-1998

It is very important that one side is marked.

NOTE — If possible, the marked side should be identified by a distinguishing feature such as wire marking, coating, watermark, glazing, etc. If the side cannot be identified, then the side facing the wrapper of a sealed ream, or the upper face of the top sheet on an open skid of paper, should be the marked side.

#### 8 Procedure

#### 8.1 General information

The procedure which follows assumes that an instrument such as a modified engineer's vernier calliper (see annex C) is employed. This instrument can be used to measure the chord length and chord-to-arc distance, from which parameters the curl magnitude (as reciprocal radius of curvature) is calculated. In principle the instrument can be used, with the formula in 9.1, to determine the curl of any sample. There will, however, be practical limitations imposed by the geometry of the measuring apparatus. Examples of curl shapes which may be obtained are shown in annex A, which also shows the chord length (C) and chord-to-arc distance (h).

NOTE — The chord-to-arc distance is the maximum distance from the chord to the arc, measured upon a line perpendicular to the chord.

#### 8.2 Method

#### 8.2.1 Exposing the test pieces to the test environment

Suspend the test piece in the test environment by means of a small hook or clip placed near the edge of the test piece along the line marking the machine direction. Within the required time limits, observe the approximate curl axis and concave side. Keeping the test piece in the same environment, carefully remove the test piece and, using a small headed pin, fix it at its centre against the vertical support (see 5.2) so that the concave side is facing the operator. Rotate the test piece so that the axis of curl is vertical. At the top of the test piece, mark the centre line of the curl axis and then, at this point, fix the top of the test piece to the support by another pin.

NOTE 1 If determining the curl of paper or board without conditioning (i.e. as received), the exposure and measurement procedure should be carried out as rapidly as possible to minimize any significant change in curl.

NOTE 2 Care is needed when attaching the test piece to any suspending or supporting devices so as not to bend the test piece in such a way that the curl would be affected.

NOTE 3 Test pieces may be exposed and measured horizontally by placing the test pieces on a flat surface with the concave side up, if it can be shown within experimental error that gravity does not have a significant influence on the test result. (Board test pieces are generally too stiff to be significantly influenced by gravity.)

**iTeh STANDARD PREVIEW** NOTE 4 In cases where square test pieces exhibit a significant diagonal curl, difficulties in measurement are such that the results should be treated with caution.

#### ISO 11556:1998

#### 8.2.2 Measurement of chord length and chord-to-arc distance - 3d29-4f6b-b0ed-

61746c297046/iso-11556-1998

Use circular or square test pieces. Protect test pieces from drafts during the measurements. Using the modified vernier calliper, measure the length of the chord (C) across the centre of the test piece to the nearest 0,5 mm and measure the chord-to-arc distance (h) to the nearest 0,5 mm.

Repeat the procedure with the remaining nine test pieces.

NOTE 1 In order to obtain accurate measurements when using the modified vernier calliper, it is recommended that the vernier calliper be supported by means of a laboratory jack.

NOTE 2 Results obtained from test pieces of different shapes should not be compared with one another.

#### 8.2.3 Identification of the side towards which the paper or board curls

If a side can be positively identified, record the side towards which each test piece is curling. If the side cannot be identified, record whether it curls towards or away from the marked side.

#### 8.2.4 Measurement of the angle of axis of curl

Using the device described in 5.4, for each test piece, record to the nearest degree the angle from the axis of curl to the machine direction and whether this angle is clockwise (+) or counter clockwise (-) as defined in 3.1.2.

#### 9 Calculations

#### 9.1 Magnitude of curl

The magnitude of the curl (K) for each test piece, expressed as the reciprocal radius of curvature, is calculated from:

$$K = \frac{1}{R} = \frac{8H}{4h^2 + C^2} \times 100$$

where

 $\frac{1}{R}$  is the reciprocal radius of curvature in m<sup>-1</sup>;

*c* is the chord length in mm;

*h* is the chord-to-arc distance in mm.

Where possible, determine the mean and standard deviation of the curl magnitude.

#### 9.2 Angle of curl axis

## 9.2.1 All test pieces curl towards the same side.

**9.2.1.1** If all the angles have the same sign, calculate the mean angle and the standard deviation and record the mean angle as either positive or negative.

**9.2.1.2** If some of the measured angles are positive and some are negative, but all the values are less than 20°, determine the algebraic mean and the standard deviation and report the algebraic mean as positive or negative.

**9.2.1.3** If some of the measured angles are positive and some are negative, and all angles exceed 70°, subtract each negative angle from 180°, to give positive values greater than 90°. Combine these calculated positive values with the measured positive values and calculate the mean angle and the standard deviation. If this mean angle is less than 90°, subtract it from 180° and report the resultant angle as a negative angle.

**9.2.1.4** If some of the angles are positive and some are negative, and some are between 20° and 70°, record the curl components of each test piece separately.

#### 9.3 Variation in side towards which paper or board curls

If some test pieces curl one way and some the other, record the curl components of each test piece separately.

NOTE — An alternative method of reporting the data for curl components is given in informative annex D.

#### 10 Repeatability and reproducibility

Based on data from four laboratories testing four different papers and ten determinations per paper, the following precision data were found for curl magnitude.