



# INTERNATIONAL STANDARD





# THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

| 3, rue de VarembéFax: +41 22 919 03 00CH-1211 Geneva 20info@iec.chSwitzerlandwww.iec.ch |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

#### About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

#### About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

#### IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

## IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

#### IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications Just Published details all new publications released. Available online and also once a month by email.

### Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (JEV) online.

#### EC Glossary - std.iec.ch/glossary

55 p00 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

#### IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

https://standards.iteh

1-c600-439f-bc15-de1d631d1588/iec-62232-2017



Edition 2.0 2017-08

colour inside

# INTERNATIONAL STANDARD

Determination of RF field strength, power density and *SAR* in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure

https://standards.iteh

La-cooo-+5)1-be15-ac1a051a1560/1cc-02252-201

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13.280; 17.240

ISBN 978-2-8322-4635-1

Warning! Make sure that you obtained this publication from an authorized distributor.

# CONTENTS

| F  | OREWO           | RD                                                                                                     | 12    |
|----|-----------------|--------------------------------------------------------------------------------------------------------|-------|
| IN | ITRODU          | ICTION                                                                                                 | 14    |
| 1  | Scop            | e                                                                                                      | 15    |
| 2  | Norm            | native references                                                                                      | 15    |
| 3  | Term            | is and definitions                                                                                     | 16    |
| 4  | Sym             | ools and abbreviated terms                                                                             | 22    |
| •  | ۰.<br>۱۱        | Physical quantities                                                                                    |       |
|    | 4.1             | Constants                                                                                              | 23    |
|    | 4.3             | Abbreviated terms                                                                                      | 23    |
| 5  | Quic            | k start guide and how to use this document                                                             | 24    |
|    | 5.1             | Overview.                                                                                              | 24    |
|    | 5.2             | Quick start guide                                                                                      | 24    |
|    | 5.3             | How to use this document                                                                               | 26    |
|    | 5.4             | Worked case studies                                                                                    | 27    |
| 6  | Evalı<br>in-sit | uation processes for product compliance, product installation compliance and u RF exposure assessments | 27    |
|    | 6 1             | Evaluation process for product compliance                                                              | 27    |
|    | 6.1.1           | General                                                                                                | 27    |
|    | 6.1.2           | Establishing compliance boundaries                                                                     | 27    |
|    | 6.1.3           | Iso-surface compliance boundary definition                                                             | 28    |
|    | 6.1.4           | Simple compliance boundaries                                                                           | 28    |
|    | 6.1.5           | Methods for establishing the compliance boundary                                                       | 30    |
|    | 6.1.6           | Uncertainty                                                                                            | 32    |
|    | 6.1.7           | Reporting                                                                                              | 32    |
|    | 6.2             | Evaluation process used for product installation compliance                                            | 33    |
|    | 6.2.1           |                                                                                                        | 33201 |
|    | 6.2.2           | General evaluation procedure for product installations                                                 | 33    |
|    | 6.2.3           | Product installation data collection                                                                   | 34    |
|    | 6.2.4           | Simplified product installation evaluation process                                                     | 35    |
|    | 6.2.5           | Assessment area selection                                                                              | 37    |
|    | 6.2.6           | Measurements                                                                                           | 39    |
|    | 6.2.7           | Computations                                                                                           | 40    |
|    | 6.2.8           | Uncertainty                                                                                            | 41    |
|    | 6.2.9           | Reporting                                                                                              | 41    |
|    | 6.3             | Evaluation processes for in-situ RF exposure assessment                                                | 42    |
|    | 6.3.1           | General requirements, source determination and site analysis                                           | 42    |
|    | 6.3.2           | Measurement procedures                                                                                 | 44    |
|    | 6.3.3           | Uncertainty                                                                                            | 45    |
|    | 6.3.4           | Reporting                                                                                              | 45    |
|    | b.4             | Averaging procedures                                                                                   | 46    |
|    | 0.4.1           | Spatial averaging                                                                                      | 40    |
| 7  | 0.4.2           | rmine averaging                                                                                        | 40    |
| 1  |                 |                                                                                                        | 40    |
|    | /.1<br>7.0      |                                                                                                        | 46    |
|    | 1.2             | Process to determine the evaluation method                                                             | 46    |
|    | 7.2.1           | General                                                                                                | 46    |

|          | 7.2.2               | Establishing the evaluation points in relation to the source-environment plane | 47         |
|----------|---------------------|--------------------------------------------------------------------------------|------------|
|          | 723                 | Exposure metric selection                                                      | 49         |
| 8        | Evalu               | uation methods                                                                 |            |
| •        | 8 1                 | Overview                                                                       | 49         |
|          | 8.2                 | Measurement methods                                                            | 50         |
|          | 821                 | General                                                                        | 50         |
|          | 822                 | RF field strength measurements                                                 | 50         |
|          | 823                 | SAR measurements                                                               | 51         |
|          | 8.3                 | Computation methods                                                            | 57         |
| 9        | Unce                | rtainty                                                                        | 53         |
| 10       | Done                | rting                                                                          | 54         |
| 10       | Керс                |                                                                                |            |
|          | 10.1                | General requirements                                                           | 54         |
|          | 10.2                | Report format.                                                                 | 54         |
| _        | 10.3                | Opinions and interpretations                                                   | 55         |
| An<br>me | nex A (<br>ethod se | Informative) Source environment plane and guidance on the evaluation           | 56         |
|          | A.1                 | Guidance on the source-environment plane                                       | 56         |
|          | A.1.1               | General                                                                        | 56         |
|          | A.1.2               | Source-environment plane example                                               | 56         |
|          | A.1.3               | Source regions                                                                 | 57         |
|          | A.2                 | Select between computation or measurement approaches                           | 63         |
|          | A.3                 | Select measurement method                                                      | 64         |
|          | A.3.1               | Selection stages                                                               | 64         |
|          | A.3.2               | Selecting between field strength and 8AR measurement approaches                | 64         |
|          | A.3.3               | Selecting between broadband and frequency-selective measurement                | 65         |
|          | A.3.4               | Selecting RF field strength measurement procedures                             | 66         |
|          | A.4 lar             | Select computation method                                                      |            |
|          | A.5                 | Additional considerations                                                      | 68         |
|          | A.5.1               | Simplicity                                                                     | 68         |
|          | A.5.2               | Evaluation method ranking                                                      | 68         |
|          | A.5.3               | Applying multiple methods for RF exposure evaluation                           | 68         |
| An       | nex B               | normative) Evaluation methods                                                  | 69         |
|          | B.1                 | Overview                                                                       | 69         |
|          | B.2                 | Evaluation parameters                                                          | 69         |
|          | B.2.1               | Overview                                                                       | 69         |
|          | B.2.2               | Coordinate systems                                                             |            |
|          | B.2.3               | Reference points                                                               | 70         |
|          | B.2.4               | Variables                                                                      | 70         |
|          | B.3                 | Measurement methods                                                            |            |
|          | B.3.1               | RF field strength measurements                                                 | 73         |
|          | B.3 2               | SAR measurements                                                               | 104        |
|          | B.4                 | Computation methods                                                            |            |
|          | B 4 1               | Overview and general requirements                                              | 114        |
|          | B 4 2               | Formulas                                                                       | 115        |
|          | R / 2               | Basic algorithms                                                               | 122        |
|          | D.4.3<br>В Л Л      | Advanced computation methods                                                   | 120<br>120 |
|          | D.4.4               | Extrapolation from the evoluated $SAD / DE$ field strength to the required     | 129        |
|          | 0.0                 | assessment condition                                                           | 150        |

| B.5.1              | Extrapolation method                                                    | 150              |
|--------------------|-------------------------------------------------------------------------|------------------|
| B.5.2              | Extrapolation to maximum RF field strength using broadband measurements | 151              |
| B 5 3              | Extrapolation to maximum RE field strength for frequency and code       |                  |
| D.0.0              | selective measurements                                                  |                  |
| B.5.4              | Influence of traffic in real operating network                          | 152              |
| B.6 Sur            | nmation of multiple RF fields                                           | 152              |
| B.6.1              | Applicability                                                           | 152              |
| B.6.2              | Uncorrelated fields                                                     | 153              |
| B.6.3              | Correlated fields                                                       | 153              |
| B.6.4              | Ambient fields                                                          | 153              |
| Annex C (info      | rmative) Rationale supporting simplified product installation criteria  |                  |
| C.1 Gei            | neral                                                                   | 154              |
| C 2 Cla            | ss F2                                                                   | 154              |
| C 3 Cla            | ss E10                                                                  | 155              |
|                    | ss E100                                                                 | 155              |
|                    | ss E+                                                                   |                  |
| Anney D (info      | rmative). Guidance on comparing evaluated parameters, with a limit      |                  |
| value              | mative) Suidance on comparing evaluated parameters with a minit         | 159              |
|                    |                                                                         | 159              |
| D 2 Info           | prmation required to compare evaluated value against limit value        | 150              |
| D.2 Inc<br>D.3 Per | forming a limit comparison at a given confidence level                  | 150              |
| D.4 Per            | forming a limit comparison using a process based assessment scheme      | 160              |
| Annex E (info      | rmative) Uncertainty                                                    | 161              |
|                    | linative) officertainty                                                 |                  |
| E.I Bac            |                                                                         |                  |
| E.2 Red            |                                                                         |                  |
|                    | dense on uncertainty                                                    | 102              |
|                    | Concertainty and assessment schemes                                     | C-022 102<br>162 |
| E.4.1              |                                                                         | 102              |
| E.4.2              |                                                                         | 102              |
| E.4.3              | Examples of assessment schemes and compliance probabilities             |                  |
|                    | Assessment schemes and compliance probabilities                         |                  |
|                    |                                                                         | 100              |
| E.J.I              | Massurement upportainty and confidence levels                           | 100              |
| E.J.Z              | Weasurement uncertainty and confidence revers                           |                  |
|                    | mails influence quentities for field measurements                       | 170              |
|                    |                                                                         | 170              |
|                    | Celibration uncertainty of measurement entenne or field probe           | 170              |
| E.7.2              | Ergueney response of the measurement entenne or field probe             |                  |
| E.7.3              | lastropy of the measurement entenne or field probe                      | 171              |
| E.7.4              | Frequency response of the spectrum analyser                             | ۰۰۰۰۰ ۱۲۵<br>172 |
| E.7.3              | Tomporature response of a breadband field probe                         |                  |
| E.7.0              | Linearity deviation of a broadband field probe                          | ۰۰۰۰۰۱۲۵<br>172  |
|                    | Migmatch upcortainty                                                    | 1/J<br>170       |
| E.1.0              | Notice of the experimental source from sumerical source                 | 113              |
| E.1.9              | Motor fluctuation upportainty for time verying signals                  | ۲/4              |
|                    | Incertainty due to newer variation in the PE source                     | 1/4              |
| E./.II             | Uncertainty due to power variation in the RF source                     | ۲/ ۱             |
| $\Box$ ./.IZ       | Oncertainty due to held gradients                                       |                  |

| E.7.13         | Mutual coupling between measurement antenna or isotropic probe and object | 176              |
|----------------|---------------------------------------------------------------------------|------------------|
| E.7.14         | Uncertainty due to field scattering from the surveyor's body              | 177              |
| E.7.15         | Measurement device                                                        | 178              |
| E.7.16         | Fields out of measurement range                                           | 178              |
| E.7.17         | Noise                                                                     | 179              |
| E.7.18         | Integration time                                                          | 179              |
| E.7.19         | Power chain                                                               | 179              |
| E.7.20         | Positioning system                                                        | 179              |
| E 7 21         | Matching between probe and the EUT                                        | 179              |
| E 7 22         | Drifts in output power of the FUT probe temperature and humidity          | 179              |
| E 7 23         | Perturbation by the environment                                           | 179              |
| E.8 Ex         | ample influence quantities for RF field strength computations by ray      |                  |
| tra            | cing or full wave methods                                                 | 180              |
| E.8.1          | General                                                                   | 180              |
| E.8.2          | System                                                                    | 180              |
| E.8.3          | Technique uncertainties                                                   | 181              |
| E.8.4          | Environmental uncertainties                                               | 181              |
| E.9 Inf        | luence quantities for SAR measurement                                     | 182              |
| E.9.1          | General                                                                   | 182              |
| E.9.2          | Post-processing                                                           | 182              |
| E.9.3          | Device holder                                                             | 182              |
| E.9.4          | Test sample positioning                                                   | 183              |
| E.9.5          | Phantom shell uncertainty                                                 | 184              |
| E.9.6          | SAR correction target liquid permittivity and conductivity                | 184              |
| E.9.7          | Liquid permittivity and conductivity measurements.                        | 184              |
| E.9.8          | Liquid temperature                                                        | 185              |
| E.10 Inf       | luence quantities for SAR calculations 2017                               | 185              |
| s://standards  | atial averaging                                                           | ·62232222<br>185 |
| E.11.1         | General                                                                   | 185              |
| E 11 2         | Small-scale fading variations                                             | 186              |
| E 11 3         | Error on the estimation of local average power density                    | 186              |
| E 11/4         | Error on the estimation of local average power density                    | 187              |
| E 11 5         | Characterization of environment statistical properties                    | 187              |
| E.11.5         | Characterization of different averaging schemes                           | 188              |
| E 12 Inf       | luonee of human body on probe measurements of the electrical field        | 100              |
| str            | ength                                                                     | 192              |
| E.12.1         | Simulations of the influence of human body on probe measurements          |                  |
|                | based on the Method of Moments (Surface Equivalence Principle)            | 192              |
| E.12.2         | Comparison with measurements                                              | 194              |
| E.12.3         | Conclusions                                                               | 194              |
| Annex F (info  | ormative) Technology-specific guidance                                    | 195              |
| F.1 0          | verview to guidance on specific technologies                              | 195              |
| F 2 Su         | mmary of technology-specific information                                  | 195              |
| F 3 Cu         | idance on spectrum analyser settings                                      | 100              |
| E 2 1          | Overview of spectrum analyser settings                                    | 100              |
| ୮.J.I<br>⊏ 2 0 | Detection algorithms                                                      | 100              |
| F.J.∠<br>E 2 2 | Decount algorithms                                                        | <br>200          |
| Г.J.J<br>Г J 4 | Integration per convice                                                   | 200              |
| Г.3.4<br>Г 4 О |                                                                           |                  |
| г.4 CC         | instant power components                                                  | 203              |

| F.4.1               | TDMA/FDMA technology                                                                                                    | 203                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| F.4.2               | WCDMA/UMTS technology                                                                                                   | 203                               |
| F.4.3               | OFDM technology                                                                                                         | 204                               |
| F.5 WC              | DMA measurement and calibration using a code domain analyser                                                            | 204                               |
| F.5.1               | WCDMA measurements – General                                                                                            | 204                               |
| F.5.2               | Requirements for the code domain analyser                                                                               | 204                               |
| F.5.3               | Calibration                                                                                                             | 205                               |
| F.6 Wi-             | Fi measurements                                                                                                         | 207                               |
| F.6.1               | General                                                                                                                 | 207                               |
| F.6.2               | Integration time for reproducible measurements                                                                          | 207                               |
| F.6.3               | Channel occupation                                                                                                      | 208                               |
| F.6.4               | Some considerations                                                                                                     | 208                               |
| F.6.5               | Scalability by channel occupation                                                                                       | 209                               |
| F.6.6               | Influence of the application layers                                                                                     | 209                               |
| F.7 LTE             | measurements for Frequency Division Duplexing (FDD)                                                                     | 209                               |
| F.7.1               | Overview                                                                                                                | 209                               |
| F.7.2               | Maximum LTE exposure evaluation                                                                                         | 210                               |
| F.7.3               | Instantaneous LTE exposure evaluation                                                                                   | 213                               |
| F.7.4               | MIMO multiplexing of LTE base station                                                                                   | 213                               |
| F.8 LTE             | measurements for Time Division Duplexing (TDD)                                                                          | 214                               |
| F.8.1               | General                                                                                                                 | 214                               |
| F.8.2               | Definitions and transmission modes                                                                                      | 214                               |
| F.8.3               | TDD frame structure                                                                                                     | 215                               |
| F.8.4               | Maximum LTE exposure evaluation                                                                                         | 217                               |
| F.9 Esta            | ablishing compliance boundaries using numerical simulations of MIMO                                                     |                                   |
| arra                | iy antennas emitting correlated wave-forms                                                                              | 220                               |
| F.9.1               | General                                                                                                                 | 220                               |
| ://stanciards.ite   | Field combining near radio base stations for correlated exposure with the purpose of establishing compliance boundaries | <sup>2232</sup> 221 <sup>20</sup> |
| F.9.3               | Numerical simulations of MIMO array antennas with densely packed                                                        | 000                               |
|                     | CONTRACT STRUCTURE OF LOT OF MILLO OFFICE ANTONIO                                                                       | 222                               |
| F.9.4               | ret enternee                                                                                                            | 222                               |
|                     |                                                                                                                         | 223                               |
| F.10.1              | Deterministic conservative approach                                                                                     | 223                               |
| F.10.2              | Statistical conservative approach                                                                                       | 223                               |
| F.10.3              |                                                                                                                         | 223                               |
| F.10.4              | Smart antonna (TD   TE)                                                                                                 | 224                               |
| F.10.5              | Sillari antenna (TD-LTE)                                                                                                | 200                               |
| I.II ⊑Sta<br>⊑ 11 1 | Conoral                                                                                                                 | ∠JJ<br>222                        |
| г.гг.<br>Г 11 О     |                                                                                                                         | 200<br>221                        |
| F 11 2              | Compliance boundary of a dish antenna                                                                                   | 204<br>221                        |
| Ribliography        | Compliance boundary of a dish antenna                                                                                   | 236                               |
| Dibilography        |                                                                                                                         | 200                               |

| Figure 1 – Quick start guide to the evaluation process           | .25 |
|------------------------------------------------------------------|-----|
| Figure 2 – Example of complex compliance boundary                | .28 |
| Figure 3 – Example of circular cylindrical compliance boundaries | .28 |
| Figure 4 – Example of box shaped compliance boundary             | .29 |
| Figure 5 – Example of truncated box shaped compliance boundary   | .29 |

| Figure 6 – Example of dish antenna compliance boundary (from [11])                                                                                                             | 30                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Figure 7 – Example illustrating the linear scaling procedure                                                                                                                   | 31                      |
| Figure 8 – Flowchart describing the product installation evaluation process                                                                                                    | 34                      |
| Figure 9 – Square-shaped assessment domain boundary (ADB) with size $D_{ad}$                                                                                                   | 39                      |
| Figure 10 – Alternative routes to evaluate in-situ RF exposure                                                                                                                 | 43                      |
| Figure 11 – Source-environment plane concept                                                                                                                                   | 48                      |
| Figure 12 – Flow chart of the measurement methods                                                                                                                              | 50                      |
| Figure 13 – Flow chart of the relevant computation methods                                                                                                                     | 52                      |
| Figure A.1 – Example source-environment plane regions near a radio base statio antenna on a tower which has a narrow vertical (elevation plane) beamwidth (no                  | n<br>t to<br>56         |
| Figure A 2 – Example source-environment plane regions near a roof-top antenna                                                                                                  | which                   |
| has a narrow vertical (elevation plane) beamwidth (not to scale)                                                                                                               |                         |
| Figure A.3 – Geometry of an antenna with largest linear dimension $\mathcal{L}_{eff}$ and large dimension $\mathcal{L}_{end}$                                                  | est end                 |
| Figure A.4 – Maximum path difference for an antenna with largest linear dimension                                                                                              | ion <i>L</i> 62         |
| Figure B.1 – Cylindrical, cartesian and spherical coordinates relative to the RBS                                                                                              |                         |
| antenna                                                                                                                                                                        | 70                      |
| Figure B.2 – Evaluation locations                                                                                                                                              | 81                      |
| Figure B.3 – Relationship of separation of remote radio source and evaluation are separation of evaluation points                                                              | ea to<br>82             |
| Figure B.4 – Outline of the surface scanning methodology                                                                                                                       | 84                      |
| Figure B.5 – Block diagram of the near-field antenna measurement system                                                                                                        | 85                      |
| Figure B.6 – Minimum radius constraint where a denotes the minimum radius of a sphere, centred at the reference point, that will encompass the EUT                             | a<br>86                 |
| Figure B.7 – Maximum angular sampling spacing constraint                                                                                                                       | 86                      |
| Figure B.8 – Outline of the volume/surface scanning methodology                                                                                                                | 88/iec-6223 <b>90</b> 2 |
| Figure B.9 – Block diagram of typical near-field EUT measurement system                                                                                                        | 91                      |
| Figure B.10 – Spatial averaging schemes relative to foot support level and in the vertical plane oriented to offer maximum area in the direction of the source being evaluated | g<br>97                 |
| Figure B11 – Spatial averaging relative to spatial-peak field, strength point heigh                                                                                            | nt 97                   |
| Figure B 12 – Positioning of the FUT relative to the relevant phantom                                                                                                          | 105                     |
| Figure B.13 – Phantom liquid volume and measurement volume used for whole-b                                                                                                    | ody                     |
| SAR measurements with the box-shaped phantoms                                                                                                                                  | 111                     |
| Figure B.14 – Reflection due to the presence of a ground plane                                                                                                                 | 116                     |
| Figure B.15 – Enclosed cylinder around collinear arrays, with and without electric downtilt                                                                                    | al<br>116               |
| Figure B.16 – Leaky feeder geometry                                                                                                                                            |                         |
| Figure B.17 – Directions for which <i>SAR</i> estimation expressions are given                                                                                                 | 119                     |
| Figure B.18 – Reference frame employed for cylindrical formulas for field strengt<br>computation at a point P (left), and on a line perpendicular to boresight (right)         | h<br>124                |
| Figure B.19 – Views illustrating the three valid zones for field strength computation around an antenna                                                                        | ion<br>125              |
| Figure B.20 – Cylindrical formulas reference results                                                                                                                           |                         |
| Figure B.21 – Spherical formulas reference results                                                                                                                             |                         |
| Figure B.22 – Synthetic model and ray tracing algorithms geometry and paramet                                                                                                  | ers131                  |
|                                                                                                                                                                                |                         |

| Figure B.23 – Line 4 far-field positions for synthetic model and ray tracing valid example                                                                                       | Jation<br>134               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Figure B.24 – Antenna parameters for synthetic model and ray tracing algorithm validation example                                                                                | ms<br>135                   |
| Figure B.25 – Generic 900 MHz RBS antenna with nine dipole radiators                                                                                                             | 142                         |
| Figure B.26 – Line 1, 2 and 3 near-field positions for full wave and ray tracing validation                                                                                      | 142                         |
| Figure B.27 – Generic 1 800 MHz RBS antenna with five slot radiators                                                                                                             | 143                         |
| Figure B.28 – RBS antenna placed in front of a multi-layered lossy cylinder                                                                                                      | 149                         |
| Figure B.29 – Time variation over 24 h of the exposure induced by GSM 1800 (left) and FM (right) both normalized to mean                                                         | MHz<br>152                  |
| Figure C.1 – Measured <i>ER</i> as a function of distance for a low power BS ( $G = 5$ , $f = 2100$ MHz) transmitting with an <i>EIRP</i> of 2 W (class E2) and 10 W (class E10) | dBi,<br>))154               |
| Figure C.2 – Minimum installation height as a function of transmitting power corresponding to class E10                                                                          |                             |
| Figure C.3 – Compliance distance in the main lobe as a function of <i>EXRP</i> establ according to the far-field formula corresponding to class E100                             | ished<br>156                |
| Figure C.4 – Minimum installation height as a function of transmitting power corresponding to class E100                                                                         |                             |
| Figure C.5 – Averaged power density at ground level for various installation configurations of equipment with 100 W <i>EIRP</i> (class E100)                                     | 157                         |
| Figure C.6 – Compliance distance in the main lobe as a function of <i>EIRP</i> establ according to the far-field formula corresponding to class E+                               | ished<br>158                |
| Figure C.7 – Minimum installation height as a function of transmitting power corresponding to class E+                                                                           |                             |
| Figure E.1 – Examples of general assessment schemes                                                                                                                              |                             |
| Figure E.2 – Target uncertainty scheme overview                                                                                                                                  | 165                         |
| Figure E.3 – Probability of the true value being above (respectively below) the evaluated value depending on the confidence level assuming a normal distribu                     | 588/iec-62232-20<br>tion169 |
| Figure E.4 – Plot of the calibration factors for $E$ (not $E^2$ ) provided from an exar calibration report for an electric field probe                                           | nple<br>172                 |
| Figure E.5 – Computational model used for the variational analysis of reflected fields from the front of a surveyor                                                              | RF<br>177                   |
| Figure E.6 - Positioning device and different positioning errors                                                                                                                 |                             |
| Figure E.7 – Physical model of Rayleigh (a) and Rice (b) small-scale fading va                                                                                                   | riations185                 |
| Figure E.8 – Example of <i>E</i> field strength variations in line of sight of an antenna operating at 2,2 GHz                                                                   | ิ<br>186                    |
| Figure E.9 – Error at 95% on average power estimation                                                                                                                            | 187                         |
| Figure E.10 – 343 measurement positions building a cube (centre) and differer templates consisting of a different number of positions                                            | ıt<br>188                   |
| Figure E.11 – Moving a template (Line 3) through the CUBE                                                                                                                        |                             |
| Figure E.12 – Standard deviations for GSM 900, DCS 1800 and UMTS                                                                                                                 | 191                         |
| Figure E.13 – Simulation arrangement                                                                                                                                             |                             |
| Figure E.14 – Body influence                                                                                                                                                     |                             |
| Figure E.15 – Simulation arrangement                                                                                                                                             |                             |
| Figure F.1 – Spectral occupancy for GMSK                                                                                                                                         | 200                         |
| Figure F.2 – Spectral occupancy for CDMA                                                                                                                                         | 201                         |
| Figure F.3 – Channel allocation for a WCDMA signal                                                                                                                               | 204                         |

| Figure F.4 – Example of Wi-Fi frames                                                                                                                       | 207 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure F.5 – Channel occupation versus the integration time for IEEE 802.11b standard                                                                      | 208 |
| Figure F.6 – Channel occupation versus nominal throughput rate for IEEE 802.11b/g standards                                                                | 208 |
| Figure F.7 – Wi-Fi spectrum trace snapshot                                                                                                                 | 209 |
| Figure F.8 – Frame structure of transmission signal for LTE downlink                                                                                       | 210 |
| Figure F.9 – Examples of received waves from LTE downlink signals using a spectrum analyser using zero span mode                                           | 213 |
| Figure F.10 – Frame structure type 2 (for 5 ms switch-point periodicity)                                                                                   | 216 |
| Figure F.11 – Frame structure of transmission signal for TDD LTE                                                                                           | 216 |
| Figure F.12 – PBCH measurement example.                                                                                                                    | 218 |
| Figure F.13 – PBCH measurement example spectrum analyser using zero span mode                                                                              | 220 |
| Figure F.14 – MIMO array antenna with densely packed columns                                                                                               | 221 |
| Figure F.15 – Plan view representation of statistical conservative model                                                                                   | 224 |
| Figure F.16 – Binomial cumulative probability function for $N = 24$ , $R = 0.125$                                                                          | 232 |
| Figure F.17 – Binomial cumulative probability function for $N = 18$ , $RR = 2/7$                                                                           | 233 |
| Figure F.18 – Flowchart for the assessment of EMF compliance boundary in the line of sight of dish antennas (from [11])                                    | 235 |
| Table 1 – Quick start guide evaluation steps                                                                                                               | 26  |
| Table 2 – Example of product installation classes where a simplified evaluation process is applicable (based on ICNIRP general public limits [13])         | 36  |
| Table 3 – Exposure metrics validity for evaluation points in each source region                                                                            | 49  |
| Table 4 – Requirements for RF field strength measurements                                                                                                  | 51  |
| Table 5 – Whole-body SAR exclusions based on RF power levels                                                                                               | 51  |
| Table 6 – Requirements for SAR measurements.                                                                                                               | 51  |
| Table 7 – Applicability of computation methods for source-environment regions of Figure 10                                                                 | 53  |
| Table 8 – Requirements for computation methods                                                                                                             | 53  |
| Table A.1 – Definition of source regions                                                                                                                   | 59  |
| Table A.2 – Default source region boundaries                                                                                                               | 59  |
| Table A.3 – Source region boundaries for antennas with maximum dimension less than 2,5 $\lambda$ .                                                         | 60  |
| Table A.4 – Source region boundaries for linear/planar antenna arrays with a maximum dimension greater than or equal to 2,5 $\lambda$                      | 60  |
| Table A.5 – Source region boundaries for equiphase radiation aperture (e.g. dish) antennas with maximum reflector dimension much greater than a wavelength | 61  |
| Table A.6 – Source region boundaries for leaky feeders                                                                                                     | 61  |
| Table A.7 – Far-field distance $r$ measured in metres as a function of angle $\beta$                                                                       | 63  |
| Table A.8 – Guidance on selecting between computation and measurement     approaches                                                                       | 64  |
| Table A.9 – Guidance on selecting between broadband and frequency-selective     measurement                                                                | 65  |
| Table A.10 – Guidance on selecting RF field strength measurement procedures                                                                                | 66  |
| Table A.11 – Guidance on selecting computation methods                                                                                                     | 67  |

| Table A.12 – Guidance on specific evaluation method ranking                                                                                                                                                   | 68    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table B.1 – Dimension variables                                                                                                                                                                               | 70    |
| Table B.2 – RF power variables                                                                                                                                                                                | 71    |
| Table B.3 – Antenna variables                                                                                                                                                                                 | 72    |
| Table B.4 – Exposure metric variables                                                                                                                                                                         | 73    |
| Table B.5 – Broadband measurement system requirements                                                                                                                                                         | 75    |
| Table B.6 – Frequency-selective measurement system requirements                                                                                                                                               | 76    |
| Table B.7 – Sample template for estimating the expanded uncertainty of an in-situRF field strength measurement that used a frequency-selective instrument                                                     | . 100 |
| Table B.8 – Sample template for estimating the expanded uncertainty of an in-situRF field strength measurement that used a broadband instrument                                                               | . 101 |
| Table B.9 – Sample template for estimating the expanded uncertainty of a laboratory based RF field strength measurement using the surface scanning method                                                     | . 102 |
| Table B.10 – Sample template for estimating the expanded uncertainty of a laboratory-<br>based RF field strength measurement using the volume scanning method                                                 | . 103 |
| Table B.11 – Numerical reference SAR values for reference dipoles and flat phantom –   All values are normalized to a forward power of 1 W                                                                    | . 108 |
| Table B.12 – Phantom liquid volume and measurement volume used for whole-body   SAR measurements [35], [29]                                                                                                   | . 111 |
| Table B.13 – Correction factor to compensate for a possible bias in the obtained general public whole-body <i>SAR</i> when assessed using the large box-shaped phantom for child exposure configurations [36] | . 111 |
| Table B.14 – Measurement uncertainty evaluation template for EUT whole-body SAR test                                                                                                                          | .112  |
| Table B.15 – Measurement uncertainty evaluation template for whole-body SAR system validation                                                                                                                 | . 113 |
| Table B.16 – Applicability of SAR estimation formulas                                                                                                                                                         | . 120 |
| Table B.17 – Definition of C(f)                                                                                                                                                                               | . 121 |
| Table B.18 – Input parameters for SAR estimation formulas validation                                                                                                                                          | .123  |
| Table B.19 – $SAR_{100}$ and $SAR_{Wb}$ estimation formula reference results for Table B.18 parameters and a body mass of 46 kg                                                                               | . 123 |
| Table B.20 – Definition of boundaries for selecting the zone of computation                                                                                                                                   | . 126 |
| Table B 21 - Input parameters for cylinder and spherical formulas validation                                                                                                                                  | . 128 |
| Table B.22   Sample template for estimating the expanded uncertainty of a synthetic     model and ray tracing RF field strength computation                                                                   | . 133 |
| Table B.23 – Synthetic model and ray tracing power density reference results                                                                                                                                  | . 136 |
| Table B.24 – Sample template for estimating the expanded uncertainty of a full waveRF field strength computation                                                                                              | . 140 |
| Table B.25 – Validation 1 full wave field reference results                                                                                                                                                   | . 143 |
| Table B.26 – Validation 2 full wave field reference results                                                                                                                                                   | . 144 |
| Table B.27 – Sample template for estimating the expanded uncertainty of a full wave   SAR computation                                                                                                         | . 147 |
| Table B.28 – Validation reference SAR results for computation method                                                                                                                                          | .149  |
| Table E.1 – Determining target uncertainty                                                                                                                                                                    | . 165 |
| Table E.2 – Monte Carlo simulation of 10 000 trials, both surveyor and auditor using best estimate                                                                                                            | . 167 |
| Table E.3 – Monte Carlo simulation of 10 000 trials, both surveyor and auditor using target uncertainty of 4 dB.                                                                                              | . 167 |

| Table E.4 – Monte Carlo simulation of 10 000 trials surveyor uses upper 95 % CI vauditor uses lower 95 % CI<br>Table E.5 – Guidance on minimum separation distances for some dipole lengths to<br>ensure that the uncertainty does not exceed 5 % or 10 % in a measurement of <i>E</i><br>Table E.6 – Guidance on minimum separation distances for some loop diameters to | vs.<br>          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Table E.5 – Guidance on minimum separation distances for some dipole lengths to ensure that the uncertainty does not exceed 5 % or 10 % in a measurement of $E$<br>Table E.6 – Guidance on minimum separation distances for some loop diameters to                                                                                                                        | o<br>to<br>      |
| Table E.6 – Guidance on minimum separation distances for some loop diameters t                                                                                                                                                                                                                                                                                            | to<br>176<br>r   |
| ensure that the uncertainty does not exceed 5 % or 10 % in a measurement of $H_{}$                                                                                                                                                                                                                                                                                        | r                |
| Table E.7 – Example minimum separation conditions for selected dipole lengths for10 % uncertainty in E                                                                                                                                                                                                                                                                    |                  |
| Table E.8 – Standard estimates of dB variation for the perturbations in front of a surveyor due to body reflected fields as described in Figure E.5                                                                                                                                                                                                                       |                  |
| Table E.9 – Standard uncertainty ( $u$ ) estimates for $E$ and $H$ due to body reflections the surveyor for common radio services derived from estimates provided in Table                                                                                                                                                                                                | s from<br>E.8178 |
| Table E.10 – Maximum sensitivity coefficients for liquid permittivity and conductivity over the frequency range 300 MHz to 6 GHz.                                                                                                                                                                                                                                         | ty<br>185        |
| Table E.11 – Uncertainty at 95 % for different fading models                                                                                                                                                                                                                                                                                                              |                  |
| Table E.12 – Correlation coefficients for GSM 900 and DCS 1800                                                                                                                                                                                                                                                                                                            |                  |
| Table E.13 – Variations of the standard deviations for the GSM 900, DCS 1800 an UMTS frequency band                                                                                                                                                                                                                                                                       | ıd<br>191        |
| Table E.14 – Examples of total uncertainty calculation                                                                                                                                                                                                                                                                                                                    |                  |
| Table E.15 – Maximum simulated error due to the influence of a human body on the measurement values of an omni-directional probe                                                                                                                                                                                                                                          | ne<br>194        |
| Table E.16 – Measured influence of a human body on omni-directional probe                                                                                                                                                                                                                                                                                                 | 10/              |
| Table E 1 Tashnalagy apositis information                                                                                                                                                                                                                                                                                                                                 | 106              |
| Table F.1 – Technology specific momation                                                                                                                                                                                                                                                                                                                                  |                  |
| Table F.2 – Example of spectrum analyset settings for an integration per service                                                                                                                                                                                                                                                                                          | 202              |
| technologies                                                                                                                                                                                                                                                                                                                                                              |                  |
| Table F.4 – WCDMA decoder requirements                                                                                                                                                                                                                                                                                                                                    |                  |
| Table F.5 – Signal configurations                                                                                                                                                                                                                                                                                                                                         |                  |
| Table F.6 – WCDMA generator setting for power linearity                                                                                                                                                                                                                                                                                                                   |                  |
| Table F.7 – WCDMA generator setting for decoder calibration                                                                                                                                                                                                                                                                                                               |                  |
| Table F.8 WCDMA denerator setting for reflection coefficient measurement                                                                                                                                                                                                                                                                                                  |                  |
| Table F.9 - Theoretical extrapolation factor, <i>N</i> <sub>RS</sub> , based on frame structure given 3GPP TS 36.104 [10]                                                                                                                                                                                                                                                 | in<br>212        |
| Table F.10 – Configuration of special subframe (lengths of DwPTS/GP/UpPTS)                                                                                                                                                                                                                                                                                                |                  |
| Table F.11 – Uplink-downlink configurations                                                                                                                                                                                                                                                                                                                               | 217              |

## INTERNATIONAL ELECTROTECHNICAL COMMISSION

# DETERMINATION OF RF FIELD STRENGTH, POWER DENSITY AND SAR IN THE VICINITY OF RADIOCOMMUNICATION BASE STATIONS FOR THE PURPOSE OF EVALUATING HUMAN EXPOSURE

# FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee Interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express as hearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for interpational use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, TEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Undependent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication use of, or reliance upon, this IEC Publication or any other IEC Publication.
  - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispersable for the correct application of this publication.
  - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62232 has been prepared by IEC technical committee 106: Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure.

This second edition cancels and replaces the first edition published in 2011 and constitutes a technical revision.

The significant changes with respect to the previous edition are the following:

- a) Increased frequency range from 110 MHz to 100 GHz (including consideration of ambient sources 100 kHz to 300 GHz);
- b) product compliance determination of compliance boundary information for an RBS product before it is placed on the market;
- c) product installation compliance determination of the total RF exposure levels before the product is put into service;