

IEC TS 62600-30

Edition 1.0 2018-08

TECHNICAL SPECIFICATION

Marine energy – Wave tidal and other water current converters – Part 30: Electrical power quality requirements (standards.itch.ai)

IEC TS 62600-30:2018 https://standards.iteh.ai/catalog/standards/sist/062f44a5-c752-4c8b-ab2ad5fc3e82c039/iec-ts-62600-30-2018

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2018 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number) text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 21 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published **IEC Customer Service Centre - webstore.iec.ch/csc** details all new publications released. Available online and 60 fr you wish to give us your feedback on this publication or also once a month by emailtips://standards.itch.ai/catalog/standardsedifutther assistance, please contact the Customer Service d5fc3e82c039/iec-ts-Centrej.sales@iec.ch.

Edition 1.0 2018-08

TECHNICAL SPECIFICATION

> IEC TS 62600-30:2018 https://standards.iteh.ai/catalog/standards/sist/062f44a5-c752-4c8b-ab2ad5fc3e82c039/iec-ts-62600-30-2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.140

ISBN 978-2-8322-5978-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWORD		5
IN	TRODUCT	ION	7
1	Scope		8
2	Normativ	ve references	9
3	Terms a	nd definitions	9
4	Symbols	and units	10
5	•	ated terms	
6		energy converter power quality characteristic parameters	
0		erview	
		arine energy converter specification	
		Itage fluctuations (continuous operations)	
	6.3.1	General	
	6.3.2	Continuous operation: MV connected systems	
	6.3.3	Continuous operation: LV connected system	
		rrent harmonics, interharmonics and higher frequency components	
		sponse to voltage drops	
		tive power	
	6.6.1	Maximum measured powerDA.R.D. P.R.E.V.IE.W	
	6.6.2	Ramp rate limitation	16
	6.6.3	Ramp rate limitation. Set-point control (standards.iteh.ai)	16
	6.7 Re	active power	17
	6.7.1	Reactive power capability <u>TS 62600-30:2018</u>	17
	6.7.2	Reactive power capability <u>TS 62600-30:2018</u> https://standards.iteh.ai/catalog/standards/sist/062f44a5-c752-4c8b-ab2a- Set-point control. d5tc3e82c039/iec-ts-62600-30-2018	17
7	Test pro	cedures	17
	7.1 Ge	neral	17
	7.1.1	Overview	17
	7.1.2	Test validity	18
	7.1.3	Test conditions	18
	7.1.4	Test equipment	19
	7.2 Vo	Itage fluctuations (continuous operation)	23
	7.2.1	MV connected marine energy converters	23
	7.2.2	Fictitious grid	23
	7.2.3	Continuous operation – MV connected marine energy converters	25
	7.2.4	Continuous operation – LV connected marine energy converters	
		rrent harmonics, interharmonics and higher frequency components	
	7.4 Re	sponse to temporary voltage drop	27
		tive power	
	7.5.1	General	
	7.5.2	Maximum measured power	
	7.5.3	Ramp rate limitation	
	7.5.4	Set point control	
		active power	
	7.6.1	General	
	7.6.2	Reactive power capability	
	7.6.3	Set point control	

8 Determination of power quality	32
8.1 General	32
8.2 Voltage fluctuations (continuous operation)	32
8.2.1 MV connected marine energy converter units	32
8.2.2 LV connected marine energy converter	33
8.3 Current harmonics, interharmonics and higher frequency components	
Annex A (informative) Sample report format	36
A.1 General	36
A.2 Marine energy converter rated data at terminals	37
A.3 Voltage fluctuations (continuous operation)	
Annex B (informative) Voltage fluctuations and flicker	39
B.1 Medium voltage (MV) connected converters	39
B.2 Low voltage (LV) connected converters	
Annex C (informative) Measurement of active power, reactive power and voltage	41
Bibliography	43
Figure 1 Adjustment of active newer act point	16
Figure 1 – Adjustment of active power set-point	
Figure 2 – Adjustment of reactive power set-point	
Figure 3 – Assumed elements of measurement system (MV-connected marine energy converter unit)	19
Figure 4 – Assumed elements of measurement system (LV-connected marine energy converter)	20
Figure 5 – Assumed elements of wave energy converter power quality measurement IEC TS 62600-30:2018	
system	21
https://standards.iteh.ai/catalog/standards/sist/062t44a5-c752-4c8b-ab2a- Figure 6 – Assumed elements of tidal energy converter unit power quality	
measurement system	
Figure 7 – Fictitious grid for simulation of fictitious voltage	23
Figure 8 – System with short circuit emulator for testing MEC unit response to temporary voltage drop	28
Figure 9 – Tolerance of voltage drop	29
Figure B.1 – Measurement and assessment procedures for flicker during continuous operation of the marine energy converter (MV-connected converter)	39
Figure B.2 – Measurement and assessment procedures for flicker during continuous operation of the marine energy converter (LV-connected converter)	40
Table 1 – Marine energy – resource classification	14
Table 2 – Specification of per unit voltage drops (the specified magnitudes, duration and shape are for the voltage drop occurring as if the MEC under test is not connected, i.e. without contribution from the installation)	15
Table 3 – Measurement ranges to be excluded	
Table 4 – General specification of requirements for measurement equipment	
Table 5 – Specification of requirements for wave measurement equipment Table 5 – Specification of requirements for wave measurement equipment	
Table 6 – Specification of requirements for tidal velocity measurement equipment	
Table 7 – Specification of exponents according to IEC TR 61000-3-6	
Table A.1 – General marine energy converter information	36
Table A.2 – Marine energy converter nameplate ratings	36
Table A.3 – Test information	37

- 4 - IEC	C TS 62600-30:2018 © IE0	C 2018
-----------	--------------------------	--------

Table A.4 – Marine energy converter rated data at terminals	37
Table A.5 – Reactive set-point control	37
Table A.6 – Flicker index (coefficient or disturbance factor) data	38
Table A.7 – Flicker coefficient as a function of resource conditions	38

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TS 62600-30:2018</u> https://standards.iteh.ai/catalog/standards/sist/062f44a5-c752-4c8b-ab2ad5fc3e82c039/iec-ts-62600-30-2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MARINE ENERGY – WAVE, TIDAL AND OTHER WATER CURRENT CONVERTERS –

Part 30: Electrical power quality requirements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (Standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. https://standards.iteh.ai/catalog/standards/sist/062f44a5-c752-4c8b-ab2a-
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62600-30, which is a technical specification, has been prepared by IEC technical committee 114: Marine energy – Wave, tidal and other water current converters.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
114/238/DTS	114/253A/RVDTS

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62600 series, under the general title *Marine energy – Wave, tidal* and other water current converters, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date. (standards.iteh.ai)

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are included and a considered the standing of its contents. Users should therefore print this document using a colour printer.

IEC TS 62600-30:2018 © IEC 2018 - 7 -

INTRODUCTION

Marine energy conversion systems, as viable electric power sources for utility and communitybased applications, require close attention to the quality of the power produced. Poor power quality has negative impacts on both the electrical power source and the load. Therefore, guidance is needed for the manufacturer, developer and user on how to mitigate power quality issues during the design of the device. Electrical system planners also need to identify the requirements for grid integration of such variable and intermittent energy sources, while maintaining high reliability and power quality standards.

Conceptually, except for wave energy convertors, many marine energy converter unit devices operate in a manner similar to wind turbines. As power quality is a mature topic within other renewable and conventional power generation schemes, there are numerous standards, codes, and guidelines in existence. In contrast, there are no standards or technical specifications for marine power generation systems that deal with the power quality issues and the associated integration needs. Therefore, this knowledge-gap needs to be addressed through incremental, detailed and collaborative standards development.

This technical specification aims at:

- identifying power quality issues and parameters (non-device specific and non-prescriptive) for single/three-phase, grid-connected/off-grid (including micro-mini grid) marine wave, tidal and other water current converter-based power systems;
- establishing the measurement methods, application techniques and result-interpretation guidelines.

In addition to containing the associated definitions, hormative references, symbols and units, forms, annexes, as well as other supporting material, the core of this technical specification would contain the following key items: <u>IEC TS 62600-30:2018</u>

- identify characteristic parameters of standards/sist/062f44a5-c752-4c8b-ab2a identify characteristic parameters of standards and specify the quantities required to characterize the power quality impacts of marine energy conversion devices,
- develop measurement procedures as pertains to marine energy devices,
- outline standardized procedures for measuring the characteristic parameters, including test and measurement conditions, and test equipment requirements.

It is expected that this technical specification will provide evaluation guidelines for device developers and applied researchers.

Assessment of power quality for utilities will be part of a separate, future technical specification that is currently being developed under IEC TC 8 SC 8A.

MARINE ENERGY – WAVE, TIDAL AND OTHER WATER CURRENT CONVERTERS –

Part 30: Electrical power quality requirements

1 Scope

This part of IEC 62600 includes:

- definition and specification of the quantities to be determined for characterizing the power quality of a marine energy (wave, tidal and other water current) converter unit;
- measurement procedures for quantifying the characteristics of a marine energy (wave, tidal and other water current) converter.

The measurement procedures are valid for a single marine energy converter (MEC) unit (or farm) with three-phase grid or an off-grid connection. The measurement procedures are valid for any size of MEC unit, though this document only requires MEC unit types intended for PCC (Point of Common Coupling) at Medium Voltage (MV) or High Voltage (HV) to be tested and characterized. In addition, a simplified measurement and reporting procedure is outlined for MEC units connected at Low Voltage (LV) networks. MV-connected and LV-connected devices are defined as: Teh STANDARD PREVIEW

- MV connected units typically multiple three-phase MEC units operating as a marine power farm and delivering power through a HV or MV network;
- LV connected units typically single-phase_or_three-phase units deployed in isolated, hybrid or micro-grid type systems supplying small-scale loads.

Considering the nascent status of the marine energy sector, the following limitations of this document are to be recognized:

- voltage fluctuations under switching operation the current revision only considers voltage fluctuations under continuous operation;
- resource classifications to categorize the measured flicker quantities, various resource classes are suggested only as guidelines. The user is advised to use these resource classes judiciously.

The measurement procedures are designed to be as non-site-specific as possible so that power quality characteristics measured at a test site, for example, can be considered valid at other sites also providing the same MEC unit configuration and operation modes (for example control parameters). If the configuration or operation mode is changed in any way that might cause the MEC unit to behave differently with respect to power quality, the power quality measurement procedures must be repeated.

This document is for testing of wave, tidal and other water current energy converter units, though it contains information that may also be useful for testing of MEC farms. The cases described are not intended for Ocean Thermal Energy Conversion (OTEC) systems.

NOTE This document uses the following terms for system voltage:

- low voltage (LV) refers to $U_n \le 1 \text{ kV}$;
- medium voltage (MV) refers to 1 kV < U_n <= 35 kV;
- high voltage (HV) refers to $U_n > 35$ kV.

IEC TS 62600-30:2018 © IEC 2018 - 9 -

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TR 61000-3-6:2008, Electromagnetic compatibility (EMC) – Part 3-6: Limits – Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems

IEC TR 61000-3-7:2008, Electromagnetic compatibility (EMC) – Part 3-7: Limits – Assessment of emission limits for the connection of fluctuating installations to MV, HV and EHV power systems

IEC 61000-4-7:2002, *Electromagnetic compatibility (EMC) – Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto IEC 61000-4-7:2002/AMD1:2008*

IEC 61000-4-15:2010, *Electromagnetic compatibility (EMC) – Part 4-15: Testing and measurement techniques – Flickermeter – Functional and design specifications*

IEC 61400-21, Wind turbines Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines

(standards.iteh.ai) IEC 61800-3:2017, Adjustable speed electrical power drive systems – Part 3: EMC requirements and specific test methods_{FC TS} 62600-30:2018

https://standards.iteh.ai/catalog/standards/sist/062f44a5-c752-4c8b-ab2a-IEC 61869-1:2007, Instrument transformers/iecPart210(General requirements

IEC 61869-2:2012, Instrument transformers – Part 2: Additional requirements for current transformers

IEC 61869-3:2011, Instrument transformers – Part 3: Additional requirements for inductive voltage transformers

IEC 62008:2005, *Performance characteristics and calibration methods for digital data acquisition systems and relevant software*

IEC TS 62600-100:2012, Marine energy – Wave, tidal and other water current converters – Part 100: Electricity producing wave energy converters – Power performance assessment

IEC TS 62600-101:2015, Marine energy – Wave, tidal and other water current converters – Part 101: Wave energy resource assessment and characterization

IEC TS 62600-201:2015, Marine energy – Wave, tidal and other water current converters – Part 201: Tidal energy resource assessment and characterization

3 Terms and definitions

For purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

flicker

impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution fluctuates with time

Note 1 to entry: Flicker is caused by rapid, regular changes to the voltage level of the electrical supply caused by devices connected to the electrical system. The voltage variations are caused by fluctuating power consumed or generated by a load or particularly renewable generator, more severely for reactive power fluctuations.

[SOURCE: IEC 60050-161:1990,161-08-13, modified - The note to entry has been added]

3.2

network impedance phase angle

phase angle of network short-circuit impedance:

$$\psi_{\mathbf{k}} = \arctan(X_{\mathbf{k}} / R_{\mathbf{k}})$$

where

 X_{k} is the network short-circuit reactance;

*R*_k is the network short-circuit resistance ARD PREVIEW

^{3.3} (standards.iteh.ai)

PCC

point in an electric power system, electrically hearest to a particular load, at which other loads are, or may be, connected ndards.iteh.ai/catalog/standards/sist/062f44a5-c752-4c8b-ab2a-

d5fc3e82c039/iec-ts-62600-30-2018

Note 1 to entry: These loads can be either devices, equipment or systems, or distinct network users' installations.

[SOURCE: IEC 60050-161:1990,161-07-15, modified – " Power supply network" has been replaced by "electric power system"; in note 1 to entry, "customer" has been replaced by "user" and note 2 to entry has been deleted]

3.4

total harmonic distortion

ratio of the RMS value of the harmonic content to the RMS value of the fundamental component or the reference fundamental component of an alternating quantity

[SOURCE: IEC 60050-551:1998,551-20-13, modified - Notes to entry have been deleted]

4 Symbols and units

- α_0 is the electrical angle at t = 0
- β exponent with a numerical value to be selected to determine $I_{h\Sigma}$
- $\alpha_{\rm m}(t)$ electrical angle of the fundamental component of the measured voltage (°)
- ψ_{k} network impedance phase angle (°)
- Δd_{dyn} fractional change in voltage
- $c(\psi_{k})$ flicker coefficient for continuous operation
- $c_i(\psi_k)$ flicker coefficient of an individual marine energy converter

IEC TS 62600-30:2018 © IEC 2018 - 11 -

(1/2)	time series data of flicker coefficient (synthesized)
<i>c</i> (ψ _k)(t) d	time-series data of flicker coefficient (synthesized) relative voltage change (%)
u E _{plti}	long-term flicker emission limits for the PCC under consideration
E più E _{psti}	short-term flicker emission limits for the PCC under consideration
fg	supply/grid frequency (Hz)
f(t)	time-varying frequency
$f(V_{\sf MEC})$	device flicker characteristics (graphical, tabular/look-up or best-fit formula)
H_{m0}	significant wave height (m)
I _h	subgrouped RMS current harmonic of harmonic order h
$I_{h\Sigma}$	h th order harmonic current distortion at the PCC
I _{h,i}	h th order harmonic current distortion of the i th converter
$i_{m}(t)$	measured instantaneous current (A)
Ι _r	rated phase current (A)
$L_{\sf fic}$	inductance of fictitious grid (H)
n _i	ratio of the transformer at the inconverter PREVIEW
$N_{\sf mec}$	number of marine energy converters connected to the PCC
P ₆₀₀	600 s average value of maximum measured active power of the marine energy converter IEC TS 62600-30:2018
P ₆₀	60 s average value of maximum measured active power of the marine energy d5fc3e82c039/iec-ts-62600-30-2018
P _{0,2}	0,2 s average value of maximum measured active power of the marine energy converter
Plt	long-term flicker disturbance factor
$P_{lt\Sigma}$	long-term flicker emission from the sum of marine energy converters
Pr	rated active power of marine energy converter (W)
P _{st}	short-term flicker disturbance factor
$P_{st,fic}$	flicker emission from the marine energy converter unit on the fictitious grid
$P_{st,i}$	flicker disturbance factor of an individual marine energy converter
$P_{st}(t)$	time-series data of flicker disturbance factor (synthesized)
$P_{st\Sigma}$	short-term flicker emission from the sum of marine energy converters
Q	reactive power
\mathcal{Q}_{max}	maximum reactive power
\mathcal{Q}_{min}	minimum reactive power
R _{fic}	resistance of fictitious grid (Ω)
R _k	network short-circuit resistance (Ω)
S_{k}	short-circuit apparent power of the grid under specified conditions (VA)
$S_{\sf k, fic}$	short-circuit apparent power of the fictitious grid (VA)
-	