INTERNATIONAL ISO/IEC
STANDARD 11756

First edition
1992-12-15

Ea
// .

Information technology — Programming languages -
MUMPS

Technologies de I'information — Langages de programmation — MUMPS

N
|

Reference number
ISO/IEC 11756:1992 (E)

I“m'”“ ”“Im””
“"ﬂlnn ; nnlllmu
“m”‘%' "””H[”
| I”|Iﬂum..,..,..m mil”m

w
w

ISO/IEC 11756:1992 (E)

Table of Contents

Part 1: MUMPS Language Specification

1 Static Syntax Metalanguage e e 2
2 Static Syntax and SemantiCs e 3
2.1 Basic Alphabet e 3
2.2 Expression Atomexpratom F e e e 3
221NameNamecoovut i R 4

222 Variables 4

2221 Local Variable Namedvn i 4

2.2.2.2 Global Variable Name Qv o pp ms oo rrpassee oov e e e 5

2.2.2.3 Variable Handling L .00 n il L A VR Vo 6

2224 Variable Contexts . .o . . . g o i s e 9

2.2.3 Numeric Literal numlit 0 e0 LA L 0o LR IRl i) o 9

2231 NumericDataValues i 10

2.2.3.2 Meaning of numlit [SO/JEC LIT56:1990 oo v i 10

2.2.4 Numeric Interpretation-of Data o/ciandards/sist/2 6ace 87 o843 A9 1 ahldd « + v v o v v 11

2.2.4.1 Integer Interpretation: 2.0 fisocice-d 17500 10000 « v v v v v i e e 12

2242 Truth-Value Interpretation i 12

225 8tring Literal strlit 12

2.2.6 Intrinsic Special Variable Name svn oo 13

2.2.7 Intrinsic Functions function 15

2271 8ASCH .. e 15

2272 8CHAR 16

227 3 8DATA e 16

2274 SEXTRACT e 17

2275 8FIND ... 17

2276 8FNUMBER e 18

2277 SGET e 19

2278 8JUSTIFY 19

2279 BLENGTH . .o 20

2 270 BNEXT . e 20

22711 80RDER 21

22742 8PIECE e 21

227183 BQUERY e 22

22714 8RANDOM 24

© ISO/EC 1992

All rights reserved. No part of this publicat'ion may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 66 ® CH-1211 Genéve 20 e Switzerland .
Printed in Switzerland

ISO/IEC 11756:1992 (E)

22715 $SELECT e 24

2 2716 STEXT .o e 24
22748 8VIEW .. P 25

2. 2. 749 8 25

2.28 Unary Operator unaryopcovvv e nnnnn. e . .25
2.2.9 Extrinsic Special Variable e 25
2210 Extrinsic Function e i 26
2.3 EXPressions @XPr ... A 26
2.3.1 Arithmetic Binary Operators P e e 27
2.3.2 Relational Operators o e e 27
2321 NumericRelationso, 28
23.228tringRelations e e 28

233 Patternmatch e e e .. 28
2.3.4 Logical Operators e 29
2.3.5 Concatenation Operator 30
24Routines e e e e 31
241 Routine Structure e 31
2.4.2 Routine Execution e 31
2.5 General command BUIES 32
251 PostConditionals, R 33
2.5.28pacesin Commands e e e e e 34
25 B COMMEIS .« .t i e e et e e 34
254 formatin READ and WRITE i eenns 34
2.5.5 Side Effectson $Xand $Y e 34
2.5.8 TIMEBOUL crore 4 cru v e o o e 5m 5o i 5 5 5 S ee Je e e e e e h e e e e h e e e 35
257 UneReferences . v Lo L L S 35
2.5.8 Command Argument Inditection 4. .. .o, .. vvi i i e e - 36
2.5.9 Parameter Passing <.\ VLol e oL e 37
2.6 Command Definitions i e P ¥ 2
2.6.1 BREAK 1S L0000 vt e e et et it e s et e 39
2:8: 26k Q8E toh-ai/catalow/standards/sisti26adc877-8643-48 1ar b8l + « ¢ = v v e s v v v e v runs 39
26.3D0 R Ice8aNisoiee=1d756-1902 « v v vt v ttv sttt 39
264 ELSE ... e e R .40
2B FOR i e e e e 41
286 GOTO ... i e e P T 41
2.8, 7 HALT . e e e e 43
2B B HANG .. . e e e . 43
2 8.9 IF e e e 43
28,10 J0B .. e e e e e e 44
2.8. 11 KILL L e e e e e e s 44
2.8.12 LOCK . e e e e e e 45
2B 13 NEW e e 46
2.8.14 OPEN L .. e e e 48
2.6.15 QUIT L ot e 49
2816 READ ... e e e e 49
2817 SET .. o e e e e e e 51
2.B8. 18 USE . .. e e e e 52
2810 VIEW e e e 53
2.8, 20 WRITE ... it e e e e e e e e e 54
2.6.21 XECUTE .. it e e et e e e 54
2.8.22 Z . e e e e e e e s 55

ISO/IEC 11756:1992 (E)

Part 2: MUMPS Portability requirements

Introduction P T 61
1 Expression Elements L 62
11 Names P PITIP 62
1.2 Local Variables ST e 62
1.3 Global Variables EEEE TR 62
1.4 DataTypes e e 63
1.5 NumberRange i e 63
16 Integers PR 64
1.7 Character Stings o e 64
1.8 Special Variables e 64
2 EXPressions e 64
2.1 Nesting of Expressions e 84
2.2 Results T T T T T T TP 64
3 Routinesand Command Lines e e e 64
31 Command Lines, R 64
3.2 Number of Command Lines T 65
3.3 NumberofCommands e EERE 65
34 Labels e 65
3.5 Numberoflabels e [65
3.6 Number of Routinesyz ., a. . v Ao AT Fs A T s - FRE D U0/ 20k § VARRRERERERE 85
4 Indirection L adrr el e i ot B e e e e 65
5 Storage Space Restrictionsco i [65
6 Nestinghtps/standards.iteh.ai/catalog/standards/sist/26adc877-8e43:48.1+ b8l L 66
7 Other Portability Requirementsc.c.ovuiivuenoooi.. i 66
Appendix A: ASCIl Character Set (ANSI X3.4-1986). o 67
Appendix B: Metalanguage Elements. e 71
Index e 81
iv

ISO/IEC 11756:1992 (E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission} form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of
mutual interest. Other international organizations, governmental and non-
governmental, in liaison with 1ISO and IEC, also take part in the work.

In the field of information technology, 1ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the
joint technical committee are circulated to national bodies for voting. Publication
as an\International Standard requires Japproval by at least 75 % of the national
bodies casting‘a vote.

Interpational:IStandard | ISO/IEC. 11756 was prepared by American National
Standards Institute (ANSI) (as ANSI/MDC X11.1-1990) and was adopted, under a
special "fast-track procedure", by Joint Technical Committee ISO/IEC JTC 1,
Information technology, in parallel with its approval by national bodies of ISO
and'lEC.

Appendices A and B of this International Standard are for information only.

Terminology and conventions

The text of American National Standard Institute ANSI/MDC X11.1-1990 has been
approved for publication, without deviation, as an International Standard. Some
terminology and certain conventions are not in accordance with the ISO/IEC
Directives Part 3: "Drafting and presentation of International Standards"; attention
is especially drawn to the following:

Wherever the word "standard" appears, referring to this International Standard, it
should be read as "International Standard".

Cross reference

American National Corresponding International Standard
Standard
ANSI X3.4-1986 ISO/IEC 646:1991, 'Information technology - ISO 7-bit

coded character set for information interchange.

INTERNATIONAL STANDARD ISO/IEC 11756:1992 (E)

Information technology - Programming languages -
MUMPS

Part 1: MUMPS Language Specification

Introduction

Part 1 consists of two sections) that describe the MUMPS language. -~ Section 1 describes the
metalanguage used inithe remainder.of Part(1 for.the static syntax.| \Section 2 describes the static
syntax and overall semanticsiof the Janguage.’ Thedistinction between "static" and "dynamic" syntax
is as follows. The static syntax describes the sequence of icharacters in a routine as it appears on
a tape in routine interchange or on a listing. The dynamic syntax describes the sequence of
characters that would be encountered by an interpreter during execution of the routine. (There is no
requirement that MUMPS actually be interpreted). The dynamic syntax takes into account transfers
of control and values produced by indirection.

ISO/IEC 11756:1992 (E)

1 Static Syntax Metalanguage

The primitives of the metalanguage are the ASCII characters. The metalanguage operators are defined as
follows:

Operator Meaning
b definition
option
grouping
optional indefinite repetition
list
value
space

—p—
—_——

I%Klr‘ :

The following visible representations of ASCIi characters required.in the defined syntactic objects are used:
8P (space), CR (carriage-return), LF (line-feed), and FF (form-feed).

In general, defined syntactic objects will have designators which are underlined names spelled with lower case
letters, e.g., name, expr, etc. Concatenation of syntactic objects is expressed by horizontal juxtaposition,
choice is expressed by vertical juxtaposition. The ::= symbol denotes a syntactic definition. An optional
element is enclosed in square brackets [], and three dots ... denote that the previous element is optionally
repeated any number of times. The definition of name, for example, is written:

l“‘ -1
name ::= ‘ $ { ' digit ‘ e
alpha L_algha_J

The vertical bars are used to group elements‘or to'make a-choice 'of elements more readable.

Special care is taken to avoid any danger of confusing the squarebrackets in the metalanguage with the ASCIl
graphics } and [Normally, the square brackets willstand for. the;metalanguage; symbols.

The unary metalanguage operator L denotes a list of one or more occurrences of the syntactic object
immediately to its right, with one comma between each pair of occurrences. Thus,

L name is equivalent to name [, name]

The binary metalanguage operator V places the constraint on the syntactic object to its left that it must have
a value which satisfies the syntax of the syntactic object to its right. For example, one might define the syntax
of a hypothetical EXAMPLE command with its argument list by

examplecommand ::= EXAMPLE SP L examplearqument

where

expr
examplearqument ::=

| @ expratom V L exampleargument |

This example states: after evaluation of indirection, the command argument list consists of any number of
exprs separated by commas. In the static syntax (i.e., prior to evaluation of indirection), occurrences of @
expratom may stand in place of nonoverlapping sublists of command arguments. Usually, the text
accompanying a syntax description incorporating indirection will describe the syntax after all occurrences of
indirection have been evaluated.

ISO/IEC 11756:1992 (E)

2 Static Syntax and Semantics
2.1 Basic Alphabet

The routine, which is the object whose static syntax is being described in Section 2, is a string made up of the
following 98 ASClt symbols.

The 95 printable characters, including the space character represented as SP, and also,
the carriage-return character represented as CR,
the line-feed character represented as LF,
the form-feed character represented as FF.
See 2.4 for the definition of routine.

The syntactic types graphic, alpha, digit, and nonquote are defined here informally in order to save space.

graphic ::= any of the class of 95 ASCII printable characters, including

SP.

nonquote ::= any of the characters in graphic except the quote character.

honquote graphic

alpha ::= any of the class of 52 upper and lower case letters: A-2Z,
a-z.

digit ::= any of the class of 10 digits: 0-9.

2.2 Expression Atom expratom

The expression, expr, is the syntactic element which denotes the execution of a value-producing calculation;
it is defined in 2.3. The expression atom,'expratom, is'the basic value-denoting object of which expressions
are built; it is definedhere!

lvn |
expratom ::= gvn
expritem

See 2.2.2.1 for the definition of lvn. See 2.2.2.2 for the definition of gvn.

svn

function

exfunc

exvar

expritem ::= numlit

strlit

(expr)

unaryop expratom

See 2.2.6 for the definition of svn. See 2.2.7 for the definition of function. See 2.2.10 for the definition of
exfunc. See 2.2.9 for the definition of exvar. See 2.2.3 for the definition of numlit. See 2.2.5 forthe definition
of strlit. See 2.3 for the definition of expr.

| (Note: apostrophe)

unaryop 1e= ‘ + I
- (Note: hyphen)

ISO/IEC 11756:1992 (E)

2.2.1 Name name

— -
name 1i= | % ‘ l digit I .
alpha a'Lpha__I

See 2.1 for the definition of alpha and digit.

2.2.2 Variables

The MUMPS standard uses the terms flocal variables and global variables somewnhat differently from their
connotation in certain other computer languages. This section provides a definition of these terms as used
in the MUMPS environment.

A MUMPS routine, or set of routines, runs in the context of an operating system process. During its execution,
the routine will create and modify variables that are restricted to its process. It can also access (or create)
variables that can be shared with other processes. These shared variables will normally be stored on
secondary peripheral devices such as disks. At the termination of the process, the process-specific variables
cease to exist. The variables created for long term (shared) use remain on auxiliary storage devices where
they may be accessed by subsequent processes. ~

MUMPS uses the term local variable to denote variables that are created for use during a single process
activation. These variables are not available to other processes. Howaever, they are generally available to all
routines executed within the process’ lifetime. MUMPS does include certain constructs, the NEW command
and parameter passing, which limit the. availability of certain variables|to specificiroutines or parts of routines.
See 2.2.2.3 for a further discussion of variables and variable environments.

A global variable is one that is created by a MUMPS process, but is permanent and shared. As soon as it
has been created, it is accessible to other MUMPS processes on the system. Global variables do not
disappear when a process terminates. Like local variables, global variables are available to all routines
executed within a process!

2.2.2.1 Local Variable Name lvn

lvn 1= l rlvn l

See 2.2 for the definition of expratom. See section 1 for the definition of V.

rlvn 11= I name [(L E)]
€ lnamind @ (expr)

See 2.2.1 for the definition of name. See 2.3 for the definition of expr. See section 1 for the definition of L.
lnamind s:= rexpratom V. lvn

See section 1 for the definition of V.

| rlvn | !
rexpratom ::= rqvn !
expritem

ISO/IEC 11756:1992 (E)

See 2.2.2.2 for the definition of rgvn. See 2.2 for the definition of expritem.

A local variable name is either unsubscripted or subscripted; if it is subscripted, any number of subscripts
separated by commas is permitted. An unsubscripted occurrence of lvn may carry a different value from any
subscripted occurrence of jvn.

When Inamind is present it is always a component of an rivn. If the value of the rlvn is a subscripted form of
Ivn, then some of its subscripts may have originated in the Inamind. In this case, the subscripts contributed
by the Inamind appear as the first subscripts in the value of the resulting rivn; separated by a comma from the
(non-empty) list of subscripts appearing in the rest of the rivn.

2.2.2.2 Global Variable Name gvn
l rgvn ‘

avn Pi=
| @ expratom V gvn |

See 2.2 for the definition of expratom. See section 1 for the definition of V.
| |

rqvn ti= ‘ ’
)

ex

(

namin

EHL"

¢
na Xpr

)
L ex

m > >
Q-"\H
—~l0
[a =)

See 2.3 for the definition of expr. See 2.2.1 for the definition of.name. See section 1 for the definition of L.
gnamind ‘::=-"] ‘rexpratom v’ gvn =
See section 1 for the definition of V.

The prefix * uniquely denotes a globallvariable name)9A global variable name is either unsubscripted or
subscripted; if it is\subscriptedsany number of subscripts separated-by commaslis permitted. An abbreviated
form of subscripted gvn is permitted;:called:the;naked|reference, in which the prefix is present but the name
and an initial (possibly empty) sequence of subscripts is absent but implied by the value of the naked indicator.
An unsubscripted occurrence of gvn may carry a different value from any subscripted occurrence of gvn.

When gnamind is present it is always a component of an rgvn. [f the value of the rgvn is a subscripted form
of gvn, then some of its subscripts may have originated in the gnamind. In this case, the subscripts
contributed by the gnamind appear as the first subscripts in the value of the resulting rgvn, separated by a
comma from the (non-empty) list.of subscripts appearing in the rest of the rgvn.

Every exscuted occurrence of gvn affects the naked indicator as follows If for any posmve mteger m, the gvn
has the nonnaked form : ;

Nvy, Vo, oy V)

then the m-tuple N, v, , v, , ..., v, , is placed into the naked indicator when the g_vn reference is made. A
subsequent naked reference of the form :

"8y 854 ey §;) (/ positive) . .-
results in a "global reference of the form

NV, , oy oo s Vit 5 804 S50 o, S))

ISO/IEC 11756:1992 (E)

after which the m+i-1-tuple N, v, , v, , ..., 5., is dplaced into the naked indicator. Prior to the first executed
occurrence of a nonnaked form of gvn, the value of the naked indicator is undefined. It is erroneous for the
first executed occurrence of gvn to be a naked reference. ‘A nonnaked reference without subscripts leaves
the naked indicator undefined.

The effect on the naked indicator described above occurs regardless of the context in which gvn is found; in
particular, an assignment of a value to a global variable with the command SET gvn = expr does not affect
the value of the naked indicator untit after the right-side expr has been evaluated. The effect on the naked
indicator of any gvn within the right-side expr will precede the effect on the naked indicator of the left-side gvn.

For convenience, glvn is defined so as to be satisfied by the syntax of either gvn or lvn.

glvn ::= | gvn |
| lvn |

See 2.2.2.1 for the definition of |vn.

2.2.2.3 Variable Handling

MUMPS has no explicit declaration or definition statements. Local and global variables, both non-subscripted
and subscripted, are automatically created as data is stored into them, and their data contents can be referred
to once information has been stored. Since the language has only one data type - string - there is no need
for type declarations or explicit data type conversions. Array structures can be multidimensional with data
simultaneously stored at all levels including the variable name level. Subscripts can be positive, negative,
and/or noninteger numbers as well.as nonnumeric,strings-(other than empty strings).

in general, the operation of the local variable symbel table can be viewed as follows. Prior to the initial setting
of information into a variable, the data value'of 'that'variable'is ‘said-to be undefined. Data is stored into a
variable with commands such as SET, READ, or FOR. Subsequent references to that variable return the data
value that was most recently stored. When a variable is killed,cas with the KILL command, that variable and
all of its array descendants (if any).are deleted, andtheir. data values become undefined.

No explicit syntax is needed for a routine or subroutine to have access to the local variables of its caller.
Except when the NEW command or parameter passing is being used, a subroutine or calied routine (the
callee) has the same set of variable values as its caller and, upon completion of the called routine or
subroutine, the caller resumes execution with the same set of variable values as the callee had at its
completion.

The NEW command provides scoping of local variables. It causes the current values of a specified set of
variables to be saved. The variables are then set to undefined data values. Upon returning to the caller of
the current routine or subroutine, the saved values, including any undefined states, are restored to those
variables. Parameter passing, including the DO command, extrinsic functions, and extrinsic variables, allows
parameters to be passed into a subroutine or routine without the callee being concerned with the variable
names used by the caller for the data being passed or returned.

The tormal association of MUMPS local variables with their values can best be described by a conceptual
model. This model is NOT meant to imply an implementation technique for a MUMPS processor.

The value of a MUMPS variable may be described by a relationship between two structures: the NAME-
TABLE and the VALUE-TABLE. (In reality, at least two such table sets are required, one pair per executing
process for process-specific local variables and one pair for system-wide global variables.) Since the value
association process is the same for both types of variables, and since issues of scoping due to parameter

ISO/IEC 11756:1992 (E)

passing or nested environments apply only to local variables, the discussion that follows will address only local
variable value association. It should be noted, however, that while the overall structures of the table sets are
the same, there are two major differences in the way the sets are used. First, the global variable tables are
shared. This means that any operations on the global tables, e.g., SET or KILL, by one process, affect the
tables for all processes. Second, since scoping issues of parameter passing and the NEW command are not
applicable to global variables, there is always a one-to-one relationship between entries in the global NAME-
TABLE (variable names) and entries in the global VALUE-TABLE (values).

The NAME-TABLE consists of a set of entries, each of which contains a name and a pointer. This pointer
represents a correspondence between that name and exactly one DATA-CELL from the VALUE-TABLE. The
VALUE-TABLE consists of a set of DATA-CELLs, each of which contains zero or more tuples of varying
degrees. The degree of a tuple is the number (possibly 0). of elements or subscripts in the tuple list. Each
tuple present in the DATA-CELL has an associated data value.

The NAME-TABLE entries contain every non-subscripted variable or array name (name) known, or accessible,
by the MUMPS process in the current environment. The VALUE-TABLE DATA-CELLs contain the set of tuples
that represent all variables currently having data-values for the process. Every name (entry) in the NAME-
TABLE refers {points) to exactly one DATA-CELL, and every entry contains a unique name. Several NAME-
TABLE entries (names) can refer to the same DATA-CELL, however, and thus there is a many-to-one
relationship between (al) NAME-TABLE entries and DATA-CELLs. A pame is said to be bound to its
corresponding DATA-CELL through the pointer in the NAME-TABLE entry. Thus the pointer is used to
represent the correspondence and the phrase change the pointer is the equivalent to saying change the
correspondence so that a name now corresponds to a possible different DATA-CELL (value). NAME-TABLE
entries are also placed in the PROCESS-STACK (see 2.2.2.4).

The value of an unsubscripted lva corresponds to the tuple of degree’0 found in the DATA-CELL that is bound
to the NAME-TABLE entry containing the name of the Ivn. The value of a subscripted lvn (array node) of
degree n also corresponds to a tuplesin the DATA-CELL that isibound to the NAME-TABLE entry containing
the name of the lvn. The specific tuple in that DATA-CELL is the tuple of degree n such that each subscript
of the lvn has the same value as the corresponding element of the tuple. If the designated tuple doesn’t exist
in the DATA-CELL then the corresponding lvn is said to be undefined.

ISO/IEC 11756:1992 (E)

In the following figure, the variables and array nodes have the designated data values.

VAR1 = "Hello"
VAR2 = 12.34
VAR3 = "abc"

VAR3("Smith","John",1234)=123
VAR3("Widget","red") - '56

Also, the variable DEF existed at one time but no longer has any data or array valus, and the variable. XYZ
has been bound through parameter passing to the same data and array information as the variable VAR2.

NAME-TABLE VALUE-TABLE DATA-CELLS

VAR]~wmm—a———— > ()="Hello"

7.1 S > ()=12.34

D60 f I —— >

VAR3mmmmwmm e > ()="abc"
("Smith","John",1234)=123
("Widget","red")=-56

o) of S —— >

The initial state of a MUMPS process| prior td lexecution ‘of any' MUMPS code consists of an empty NAME-
TABLE and VALUE-TABLE. When information is to be stored (set, given, or assigned) into a variable (lvn):

a. If the name of the lvn does not already appear in an entry in the NAME-TABLE, an entry is added
to the NAME-TABLE which contains the name and a._pointer to a new (empty) DATA-CELL. The
corresponding DATA-CELL is added to the VALUE-TABLE without any initial tuples.

b. Otherwise, the pointer in the NAME-TABLE entry which contained the name of the ivn is
extracted. The operations in step c. and d. refer to tuples in that DATA-CELL referred to by this
pointer.

c. If the lvn is unsubscripted, then the tuple of degree 0 in the DATA-CELL has its data value
replaced by the new data value. If that tuple did not already exist, it is created with the new data
value.

d. If the lvn is subscripted, then the tuple of subscripts in the DATA-CELL (i.e., the tuple created by
dropping the name of the lvn; the degree of the tuple equals the number of subscripts) has its data
value replaced by the new data value. If that tuple did not already exist, it is created with the new
data value.

When information is to be retrieved, if the name of the lvn is not found in the NAME-TABLE, or if its
. corresponding DATA-CELL tuple does not exist, then the data value is said to be undefined. Otherwise, the
data value exists and is retrieved. A data value of the empty string (a string of zero iength) is not the same
as an undefined data value.

ISO/IEC 11756:1992 (E)

When a variable is deleted (killed):
a. If the name of the lvn is not found in the NAME-TABLE, no further action is taken.
b. If the lvn is unsubscripted, all of the tuples in the corresponding DATA-CELL are deleted.

c. If the lvn is subscripted, let N be the degree of the subscript tuple formed by removing the name
from the lvn. All tuples that satisfy thé following two conditions are deleted from the corresponding
DATA-CELL:

1. The degree of the tuple must be greater than or equal to N, and
2. The first N arguments of the tuple must equal the corresponding subscripts of the lvn.

In this formal language model, even if all of the tuples in a DATA-CELL are deleted, neither the DATA-CELL
nor the corresponding names in the NAME-TABLE are ever deleted. Their continued existence is frequently
required as a result of parameter passing and the NEW command.

2.2.2.4 Variable Contexts

The organization of multiple variable contexts requires the use of a PROCESS-STACK. This is a simple push-
down stack, or last-in-first-out (LIFO) list, used to save and restore items which control the execution flow or
variable environment. Five types of items, or frames, will be placed on the PROCESS-STACK, DO frames,
extunc frames, exvar frames, NEW frames, jand parameter frames:

a. DO frames containthe execution leveland theexecution location of the doargument. In the case
of the argumentless DO, the execution level, the execution location of the DO command and a saved
value of $T are saved. The execution location of a MUMPS process is a descriptor of the location
of the command and possible argument-currently being executed. This descriptor includes, at
minimum, the routinename and the character position following the'current command or argument.

b. Exfunc and exvar frames contain saved values of $T, the execution level, and the execution
location. ' ‘ ‘

c. NEW frames contain a NEW argument (newargument) and a set of NAME TABLE entries.

d. Parameter frames contain a formallist and a set of NAME-TABLE entries.

2.2.3 Numeric Literal pumlit

The integer literal syntax, intlit, which is a nonempty string of digits, is defined here.
intlit ::= digit ...

See 2.1 for the definition of digit.

The numeric literal numlit is defined as follows.

numlit ::= mant [exp]

	|‚�łž¡]ÿB±Ýg��³9ıQ¯ÕÎšÚ
Ôˇ@�ì5s=Üm$òÛ”�Äü�íu™/F�6ü1łZðà�H�cf_Ã(v	_öHM�¤1=−t��‰��

