

Designation: D 5982 – 02

Standard Test Method for Determining Cement Content of Fresh Soil-Cement (Heat of Neutralization Method)¹

This standard is issued under the fixed designation D 5982; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope *

1.1 This test method covers the procedure for determining the cement content of fresh soil-cement. This test method can be used for determining the cement content of specimens that contain 3 to 16 % cement. This test method is appropriate for soil-cement containing up to 55 % plus 4.75 mm (No. 4) sieve-size particles with a maximum particle size of 75 mm (3 in.). It should not be used for determining the Class F pozzolan content of these mixtures.

1.2 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026.

1.2.1 The method used to specify how data are collected, calculated, or recorded in this test method is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this test method is beyond its scope.

1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.

2. Referenced Documents

2.1 ASTM Standards:

- C 219 Terminology Relating to Hydraulic Cement²
- D 653 Terminology Relating to Soil, Rock, and Contained $\ensuremath{\mathsf{Fluids}}^3$
- D 2216 Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock³
- D 3740 Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock

as Used in the Engineering Design and Construction³

- D 4753 Specification for Evaluating, Selecting, and Specifying Balances and Scales for Use in Testing Soil, Rock, and Related Construction Materials³
- D 6026 Practice for Using Significant Digits in Geotechnical Data⁴
- $E\ 644\ Test$ Methods for Testing Industrial Resistance Thermometers 5

3. Terminology

3.1 Definitions:

3.1.1 Refer to Terminology D 653 for terms relating to soil.

3.1.2 Refer to Terminology C 219 for terms relating to hydraulic cement.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *heat of neutralization*—the difference between the temperature of soil-cement/buffer solution after mixing and the average of buffer solution and soil-cement test specimen temperature before mixing.

3.2.2 *percent cement*—percentage of cement by total mass of specimen.

4. Summary of Test Method ba42aa/astm-d5982-02

4.1 A representative sample of fresh soil-cement is obtained. The temperature of the soil-cement test specimen and a buffer solution are determined separately and recorded. The buffer solution is added to the soil-cement test specimen and vigorously mixed. After mixing, the temperature of the soilcement/buffer solution mixture is determined and recorded. The heat of neutralization is calculated and, from a previously established calibration curve, the cement content of the test specimen is obtained.

5. Significance and Use

5.1 This procedure provides a means for reliably determining the cement content of soil-cement in approximately 15 to 20 min. The procedure can be used to determine the cement content of soil-cement to ± 1 percentage point by mass of dry sample of the actual cement content, that is generally adequate for most construction control applications.

¹ This test method is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.15 on Stabilization with Admixtures.

Current edition approved July 10, 2002. Published September 2002. Originally published as D 5982–96. Last previous edition D 5982–96.

² Annual Book of ASTM Standards, Vol 04.01.

³ Annual Book of ASTM Standards, Vol 04.08.

⁴ Annual Book of ASTM Standards, Vol 04.09.

⁵ Annual Book of ASTM Standards, Vol 14.03.

5.2 The buffer solution reacts with the calcium hydroxide in the cement and may react with calcareous material in the soil to produce heat. Any reaction from calcareous soil is accommodated in the calibration curve but below 3 % cement content there is usually insufficient temperature reaction for reliable results. Because Class F pozzolan may not contain any calcium hydroxide for reaction, this test method will not determine percentage Class F pozzolan in the mix.

NOTE 1—The quality of the result produced by this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing/sampling/inspection/ and the like. User of this standard are cautioned that compliance with Practice D 3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D 3740 provides a means of evaluating some of those factors.

6. Apparatus

6.1 *Balance or Scale*— Chosen in accordance with Specification D 4753.

6.1.1 A typical balance or scale used for obtaining the mass of a soil-cement test specimen must be readable to 0.01 kg or 0.01 lbm and have a capacity of about 9.1 kg (20 lbm).

6.1.2 A typical balance or scale used for preparing the buffer solution (see 7.4) must be readable to 0.1 g and have a capacity of about 3000 g.

6.2 Digital Thermometer, 0 to 100° C range, readable to 0.1° C, conforming to the requirements of Test Methods E 644. The digital thermometer must be equipped with a thermocouple probe as short as possible and no more than (5 in.) in length.

6.3 *Specimen Container*, leakproof, widemouth plastic (Nalgene) container, 4-L (1-gal) capacity, with screw cap, minimum of three recommended. One cap should be pierced in the center to allow insertion of the thermometer probe.

6.4 *Timing Device*, A stopwatch or other suitable timing device readable to 1 s.

6.5 Glass or Plastic Beaker, Approximately 3000-mL capacity.

6.6 *Funnel*, Widemouth funnel to fit mouth of specimen container (see 6.3).

6.7 *Hand Scoop*, Flatbottom and scoop with handle; approximate bowl dimensions, 75 by 150 mm $(3-\frac{1}{2})$ by 6 in.).

6.8 *Gloves*, Protective gloves to be worn whenever handling buffer solution.

6.9 *Specimen Container Holder*, Angle irons, woodblocks, or other suitable material capable of holding the specimen container securely in an inverted position.

6.10 *Buffer Container*, A suitable container with pouring spout or spigot, preferably plastic, of sufficient capacity to hold a buffer solution supply for daily testing. Each test performed requires 1.5 L of buffer solution.

6.11 Pail, Plastic pail, minimum 4-L (1-gal) capacity.

6.12 *Spoon*, Large metal spoon for mixing the soil-cement calibration test specimens as described in Section 10.

6.13 *Mixing Container*, An 11- to 15-L (3- to 4-gal) container, preferably plastic, used for mixing the soil-cement calibration test specimens as described in Section 10. 6.14 *Shovel or Large Scoop*, Square faced shovel or large scoop, used for obtaining fresh sample from belt, hopper, truck, or site.

7. Reagents and Materials

7.1 Distilled water is to be used for preparing the buffer solution as described in 7.4. Tapwater that is free of acids, alkalies, or oils and is suitable for drinking should be used for rinsing the thermocouple probe and lid.

7.2 *Sodium Acetate*— Anhydrous (crystalline) sodium acetate, technical grade or better, 225 g required for each test specimen.

7.3 *Glacial Acetic Acid*—Liquid glacial acetic acid, technical grade or better, 360 g required for each test specimen.

7.4 Preparation of Buffer Solution:

7.4.1 Prepare 1.5 liters of buffer solution for each specimen.

7.4.2 Dissolve 225 g of anhydrous sodium acetate in 500 mL of distilled water, stirring constantly.

NOTE 2—A blender or malt mixer may be used to help dissolve the anhydrous sodium acetate.

7.4.3 Add 360 g of glacial acetic acid to the sodium acetate/water solution prepared in 7.4.2.

7.4.4 Add distilled water to bring the final volume to 1.5 L. Mix thoroughly.

NOTE 3—Subsection 7.4 provides sufficient buffer for one test. If more than one test is to be performed, the proportions given should be adjusted to provide enough buffer solution to complete testing required for that day (see subsection 7.5).

7.5 Buffer solution is to be used within 24 h after it is mixed.

8. Safety Hazards

8.1 Chemicals used in this procedure contain acid that can be irritating to exposed skin. Perform this procedure only with adequate ventilation and with rinse water available. Wear rubber gloves, laboratory coat or apron, and safety glasses or goggles.

8.2 After mixing the soil-cement/buffer solution and before removing the lid, place a towel over the top of the specimen container. The pressure generated while mixing can cause fluid to spray as the lid is removed.

9. Technical Hazards

9.1 The calibration curve is specific to the mix design and material used. If mix design percentages are changed or if the source of material is changed, a new calibration curve must be developed.

9.2 Soil-cement with gravel is highly susceptible to segregation during handling. To minimize segregation, use care in obtaining samples, selecting specimens, and during remixing and testing of the soil-cement specimen.

9.3 Soil-cement samples are to be tested within 60 min from the time water and cement first come into contact during mixing at the lab, mixing plant, or on site.

9.4 Soil-cement samples must be protected from moisture loss prior to testing.

9.5 The temperature difference between the buffer solution and soil-cement specimen should not exceed 4°C. If the temperature difference is equal to or greater than 4°C, heat or cool the buffer solution to within 4°C of the soil-cement specimen.

9.6 Gelling or stiffening of the soil-cement/buffer solution mixture may occur when testing specimens having cement contents greater than 16 %. If this occurs, the ratio of mass of buffer solution to mass of soil-cement specimen (1.65 kg buffer solution to 1.50 kg soil-cement) (3.64 to 3.30 lbm) given in this test method cannot be used and a new mass ratio must be established.

9.7 The buffer solution used in the test method consists of glacial acetic acid, water, and sodium acetate. Glacial acetic acid is corrosive and ignitable and gives a distinct vinegar odor to the buffer mixture. Sodium acetate and calcium acetate (a reaction product) are not considered to be toxic or hazardous chemicals. The acidity of the buffer solution changes from pH 2 to pH 5.2 during testing and can be disposed of with the cement waste. If, after testing, a higher pH value is desired or if there is unreacted buffer solution, additional cement or lime may be added to the mixture prior to disposal.

10. Sampling

10.1 Obtain a fresh soil-cement sample using either the method described in 10.1.1 or 10.1.2. The method selected depends upon the reason for testing. Subsection 10.1.1 is to be used if the production process at the mixing plant is to be checked. Subsection 10.1.2 is to be used during placement of soil-cement at the time of construction.

10.1.1 Using a square faced shovel or large scoop, obtain a minimum 2-kg (5-lbm) sample from the mixing plant. The sample should be taken immediately after the soil-cement is deposited in the truck or onto the site. Segregation of the gravel fraction may occur during the dumping. When obtaining the sample, visually observe if it appears representative of the specified mixture proportions. If the sample does not appear representative, it should be discarded and a new sample obtained. Place the soil-cement sample in a large air-tight bucket or other suitable container (see 9.2-9.4).

10.1.2 Using a shovel or large scoop, obtain a minimum 2-kg (5-lbm) sample from the material obtained at the construction site for density or compressive strength testing, or both. When obtaining the sample, visually observe if it appears representative of the specified mixture proportions. If the sample does not appear representative, it should be discarded and a new sample obtained. Place the soil-cement sample in a large air-tight bucket or other suitable container (see 9.2-9.4).

11. Calibration and Standardization

11.1 Record all calibration data on an appropriate form or by electronic means. One example of a form that meets the data requirements is the form shown in Fig. 1.

11.2 Establish a calibration curve by determining the heat of neutralization of soil-cement test specimens prepared at known cement contents that bracket the value of percent cement to be used for construction.

11.3 Prepare nine 1.50 kg (3.30 lbm) soil-cement calibration specimens using the percentages of gravel, minus 4.75 mm (No. 4) material, and water as determined when the mixture was proportioned. The amount of cement added to the calibra-

tion specimens should be as follows: three calibration specimens should be two percentage points less cement than that specified for construction, three specimens two percentage points greater, and three specimens having the same percent cement as specified for construction. An example mixture proportion calculation for one 1.50 kg (3.30 lbm) specimen is shown on Fig. 2. Note that, in the example, water content values are required and were previously determined in accordance with Test Method D 2216 in order to calculate the quantity of each size material needed.

11.3.1 In four separate containers place the mass, determined to the nearest 0.01 kg or 0.01 lbm, of gravel, minus 4.75 mm (No. 4) material, water and cement for one 1.50 kg (3.30 lbm) soil-cement calibration specimen.

11.3.2 Combine the gravel and minus 4.75 mm (No. 4) material with one-half the required amount of water in an 11-to 15-L (3- to 4-gal) container. Mix thoroughly using a large spoon or other suitable mixing device. Ensure that the gravel is evenly wetted and that no dry clods of minus 4.75 mm (No. 4) material are present in the calibration specimen.

11.3.3 Add the cement and the remainder of the water to the calibration specimen. Mix thoroughly to ensure an even distribution of cement throughout the specimen. Ensure that no cement clods are present and no cement is sticking to the sides of the container.

11.3.4 Place the funnel into the mouth of the test specimen container.

11.3.5 Using the large spoon, place the soil-cement calibration specimen into the specimen container using care to prevent portions of the calibration specimen from sticking to the sides of the funnel. Ensure that all of the calibration specimen is removed from the mixing container and placed in the specimen container.

9811.3.6 Remove the funnel and secure the lid on the soilcement calibration specimen container. (astm-d5982-02

11.4 Determine the heat of neutralization for the soil-cement calibration specimen in accordance with 13.5-13.20.

11.5 Repeat subparagraphs 11.3.1-11.4 eight additional times to obtain nine heat of neutralization determinations.

11.6 Calculate the average of the "temperature difference" (heat rise) values obtained for the three trials performed at each of the three cement contents. The range (difference between highest and lowest) of the three individual temperatures at the same cement content should not exceed 3°C. If it does, repeat the test for that cement content. Record the value to the nearest 0.1°C as the "average temperature difference" as shown on Fig. 1.

11.7 Prepare a plot of heat of neutralization (average temperature difference) versus cement content as shown on Fig. 1. Draw and calculate the best straight line through the three or more plotted points.

11.8 Determine the equation of the calibration line. It is recommended that a computer/calculator be used to perform a linear regression analysis to obtain the equation of the best-fit line through the data points obtained.

12. Conditioning

12.1 Perform the calibration as described in Section 11 and the procedure as described in Section 13 in an area that is

∰ D 5982 – 02

Sample or Test No. 1						Project EXAMPLE												Feature CALIBRATION CURVE								
Location LABORATORY MIX						Test Specimen Mass 1.50 kg (3.30 lbm)												Buffer 1.65 kg (3.64 lbm)								
Tested by Date						Computed by Date									ate			Checked by					Date			
Specimen No.						1			2		3			4			5		6		7		8	9)	
Cement %						7			7		7			9		!	9		9		11	L	11	1	.1	
Water %					6			6		6			6			6		6		6	-	6		5		
Gravel %					50.3	3	5	0.3		50	.3		50.	3	5	0.3		50.3		50.	3	_ 50.3	50).3		
(1) Buffer Temperature ^o C					19.6	5	1	9.6		19	.7	_	20.	2	2	0.1		20.2		20.	7	_20.8	2().9		
(2) Soil-Cement Temperature					20.2	2	2	0.5		20	.6		20.	3	20	0.6		20.8		21.	1	21.1	2	1.9		
(3) Average Temperature ^o C $\frac{[(1)+(2)]/2}{(1)}$						19.9	,	2	0.1		20	.2	-	20.	3	20).4		20.5	<u> </u> .	20.	9	21.0	2	1.4	
(4) Mixture Temperature °C						35.7		3	5.3		35.3			39.7		4).2		39.7		43.4		44.0	44	4.2	
(5) Temperature Difference ^O C (4)-(3)					15.8		15.2		t	15.0		d	19.4		19	9.8	8 19			22.5		23.0	22	2.8		
(6) Average Differer	Tempo nce ^O C	eratu	ıre		n			S	1	5.3	1	d	2		d	S	1	9.5	<u>a</u>					22.8		
	24												1							A	1	Ţ		REMA	.RKS	:
tandards itch Heat of Neutralization °C Average Temperature Difference (6)	23			-		1	F		-				-		_			\downarrow	Ł		+	+				
	22			_	+	+	-	4	S	T	1	D5	98	2	02	7	4	4								
	Lar	atal	92	sta	nda	urds	9/S1	st/	60	680	at	9.	-	Z	4	42		- 9(160	-44	184	486	ib 			
	19	┼┥		+		1					_	2	4													
	_ -					+	<u> </u>			ł		←	+	y	=	1.18	37 5	x - J	2.	32 :	5					
Difference (0)	-			+		-	-	\checkmark	4	_	-		_	-	+	+		+-			+	+	4			
	17				+		Z										╈	+								
	16	+	+	+	+	1-	┨			\rightarrow			+	-	+			+-	+-	┝──╄	+	+	-			
	15			Ż					_		_		1				1		1							
	-	┼╌┤	4	+	+-	+-	+		_	+	-		+	-+	+	+	+	+	┼─	-+	+		-			
		\square		1			1									_	_	1	1_		1	1				
	13 -	+		\rightarrow		+	\vdash	\vdash	_		-		+	+	+	+	+	+	╀─	┝╍╄	╉	+	-			
	126	1-1		7		1		3			9				1()	1	1	11			12				
									C	men		~			7											

FIG. 1 Heat of Neutralization Calibration Curve

isolated from drafts and heat sources i.e., relatively uniform