

Edition 1.0 2014-01

TECHNICAL SPECIFICATION

Metallic communi**cation cable test methods -PREVIEW** Part 4-1: Electromagnetic compatibility (EMC) – Introduction to electromagnetic screening measurements

> <u>IEC TS 62153-4-1:2014</u> https://standards.iteh.ai/catalog/standards/sist/80936186-c714-4183-94b6-t8e2e27bf3f7/iec-ts-62153-4-1-2014

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2014 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number) text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 14 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

More than 55 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

details all new publications released. Available online and 153 if you wish to give us your feedback on this publication or also once a month by email. https://standards.iteh.ai/catalog/stand.needsfurther?assistancel.please.contact the Customer Service 94b6-t8e2e27bf3f7/iec-Centre53sa@iec(ch4

Edition 1.0 2014-01

TECHNICAL SPECIFICATION

Metallic communication cable test methods -PREVIEW Part 4-1: Electromagnetic compatibility (EMC) - Introduction to electromagnetic screening measurements

<u>IEC TS 62153-4-1:2014</u> https://standards.iteh.ai/catalog/standards/sist/80936186-c714-4183-94b6-t8e2e27bf3f7/iec-ts-62153-4-1-2014

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.100

ISBN 978-2-8322-1311-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOF	REWORD)		7
1	Scope			9
2	Normative references			9
3	Symbol	s interpreta	tion	10
4	Electror	nagnetic pł	nenomena	12
5	The intr	insic scree	ning parameters of short cables	14
	5.1	General		14
	5.2	Surface tr	ansfer impedance, Z _T	14
	5.3	Capacitive	e coupling admittance, Y _C	14
	5.4	Injecting v	with arbitrary cross-sections	16
	5.5	Reciprocit	ty and symmetry	16
	5.6	Arbitrary I	oad conditions	16
6	Long ca	bles – cou	pled transmission lines	16
7	Transfe	r impedanc	e of a braided wire outer conductor or screen	24
8	Test po	ssibilities		30
	8.1	General	Tek CTANDADD DDEVIEW	30
	8.2	Measuring	the transfer impedance of coaxial cables	30
	8.3	Measuring	g the transfer impedance of cable assemblies	31
	8.4	Measuring	g the transfer impedance of connectors	31
	8.5	Calculated	d maximum screening4evet-1:2014	31
9	Compar the tran	ison of the sfer impeda	frequency response of different triaxial test set-ups to measure ance of cable screens	36
	9.1	General		36
	9.2	Physical b	pasics	36
		9.2.1	Triaxial set-up	36
		9.2.2	Coupling equations	38
	9.3	Simulatior	าร	40
		9.3.1	General	40
		9.3.2	Simulation of the standard and simplified methods according to EN 50289-1-6, IEC 61196-1 (method 1 and 2) and IEC 62153-4-3 (method A)	40
		9.3.3	Simulation of the double short circuited methods	46
	9.4	Conclusio	n	54
10	Backgro	ound of the	shielded screening attenuation test method (IEC 62153-4-4)	54
	10.1	General		54
	10.2	Objectives	5	55
	10.3	Theory of	the triaxial measuring method	55
	10.4	Screening	attenuation	60
	10.5	Normalise	d screening attenuation	62
	10.6	Measured	results	63
	10.7	Comparise	on with absorbing clamp method	65
	10.8	Practical o	design of the test set-up	66
	10.9	Influence	of mismatches	67
		10.9.1	Nismatch in the inner circuit	67
		10.9.2	wismatch in the inner circuit	69

11.1 General	11	Background of the shielded screening attenuation test method for measuring the screening effectiveness of feed-throughs and electromagnetic gaskets (IEC 62153-4-10)			
11.2 Theoretical background of the test Fixtures and their equivalent circuit		11.1	General		.72
11.3Pictures and measurement results7611.3.1Characteristic impedance uniformity7611.3.2Measurements of shielding effectiveness7811.3.3Calculation of transfer impedance8011.4Calculation of screening attenuation for feed-through when the transfer8212Background of the shielded screening attenuation test method for measuring the8212Background of the shielded screening attenuation test method for measuring the8312.1Physical basics8312.1.2Screening attenuation $a_{\rm C}$ 8412.1.3Coupling transfer function8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1TGeneral TANDARD PREVIEW8612.2.2Procedure8612.2.4Influence of contact resistances89BibliographyInfluence of contact resistances89BibliographyInfluence of a procedure for pro		11.2	Theoretical	background of the test Fixtures and their equivalent circuit	.73
11.3.1Characteristic impedance uniformity7611.3.2Measurements of shielding effectiveness7811.3.3Calculation of transfer impedance8011.4Calculation of screening attenuation for feed-through when the transfer8212Background of the shielded screening attenuation test method for measuring the screening effectiveness of RF connectors and assemblies (IEC 62153-4-7)8312.1Physical basics8312.1.1Surface transfer impedance Z_T 8312.1.2Screening attenuation a_C 8412.1.3Coupling transfer function8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1TGeneral constraints and singulations8612.2.2Influence of contact resistances89Bibliography8612.2.3Measurements and singulations12.2.4Influence of contact resistances89Bibliography8612.2.4Influence of contact resistances13Figure 1 - Total electromagnetic field (E_1, H_1) 12Figure 2 - Defining and measuring screening parameters - A triaxial set-up13Figure 5 - Electrical quantities in a set-up that is matched at both ends16Figure 6 - The summing function $S_L : protection T_n and T_f for a single braid -Z_F = 021Figure 9 - Calculated coupling transfer functions T_n and T_f for a single braid -Z_F = 021$		11.3	Pictures ar	id measurement results	.76
11.3.2Measurements of shielding effectiveness7811.3.3Calculation of transfer impedance8011.4Calculation of screening attenuation for feed-through when the transfer impedance Z_T is known8212Background of the shielded screening attenuation test method for measuring the screening effectiveness of RF connectors and assemblies (IEC 62153-4-7)8312.1Physical basics8312.1.1Surface transfer impedance Z_T 8312.1.2Screening attenuation a_C 8412.1.3Coupling attenuation a_C 8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1TGeneral TANDARD PREVIEW8612.2.2Procedure ANDARD PREVIEW8612.2.3Measu (enters and sinulations a_L)8812.2.4Influence of contact resistances89BibliographyBibliography8612.2.4Influence of contact resistances89Figure 1 – Total electromagnetic field (E_L, H_L) 12Figure 2 – Defining and measuring screening parameters – A triaxial set-up13Figure 3 – Equivalent circuit for the testing of $Y_C = j \ o C_T$ 15Figure 4 – Equivalent circuit for the testing of $Y_C = j \ o C_T$ 15Figure 5 – Transfer impedance of a typical single braid screen20Figure 8 – The effect of the summing function T_n and T_f for a single braid $-Z_F = 0$ 21Figure 9			11.3.1	Characteristic impedance uniformity	.76
11.3.3Calculation of transfer impedance8011.4Calculation of screening attenuation for feed-through when the transferimpedance Z _T is known8212Background of the shielded screening attenuation test method for measuring thescreening effectiveness of RF connectors and assemblies (IEC 62153-4-7)8312.1Physical basics8312.1.1Surface transfer impedance Z _T 8312.1.2Screening attenuation a _C 8412.1.3Coupling transfer function8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1Tegenal TANDARD PREVIEW8612.2.2Procedure ANDARD PREVIEW8612.2.3Measurements and sinulations.all8812.4Influence of contact resistances89BibliographyInfluence of contact resistances89BibliographyInfluence of contact resistances89Sigure 1 – Total electromagnetic field (E_1, H_1)12Figure 2 – Defining and measuring screening parameters – A triaxial set-up13Figure 3 – Equivalent circuit for the testing of $Z_{\rm C}$ is $\omega C_{\rm T}$ 15Figure 4 – Equivalent circuit for the testing of $Y_{\rm C} = i \omega C_{\rm T}$ 15Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 6 – The summing function $S_{\rm L}$ of near and $T_{\rm f}$ for a single braid $-Z_{\rm F} = 0$ 21Figure 8 –			11.3.2	Measurements of shielding effectiveness	.78
11.4 Calculation of screening attenuation for feed-through when the transfer impedance Z_T is known .82 12 Background of the shielded screening attenuation test method for measuring the screening effectiveness of RF connectors and assemblies (IEC 62153-4-7) .83 12.1 Physical basics .83 12.1.1 Surface transfer impedance Z_T .83 12.1.2 Screening attenuation a_C .84 12.1.3 Coupling attenuation a_C .84 12.1.4 Coupling transfer function .84 12.1.5 Relationship between length and screening measurements .85 12.2.1 General ANDARD PREVIEW .86 12.2.2 Tube in tube set-up (IEC 62153-4-7) .86 12.2.1 General ANDARD PREVIEW .86 12.2.3 Measufements and sinulational .10 .88 12.2.4 Influence of contact resistances .89 Bibliography			11.3.3	Calculation of transfer impedance	.80
12 Background of the shielded screening attenuation test method for measuring the screening effectiveness of RF connectors and assemblies (IEC 62153-4-7)		11.4	Calculation impedance	of screening attenuation for feed-through when the transfer Z _T is known	. 82
12.1Physical basics8312.1.1Surface transfer impedance Z_T 8312.1.2Screening attenuation a_C 8412.1.3Coupling attenuation a_C 8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1TGeneralANDARD PREVIEW8612.2.2Measurements and sinulations8112.2.1Measurements and sinulations8112.2.3Measurements and sinulations8112.4Influence of contact resistances89BibliographyInfluence of contact resistances89BibliographyInfluence of contact resistances89Figure 1 – Total electromagnetic field $(\vec{E_1}, \vec{H_1})$ 12Figure 2 – Defining and measuring screening parameters – A triaxial set-up13Figure 3 – Equivalent circuit for the testing of Z_T 15Figure 4 – Equivalent circuit for the testing of $Y_C = j \omega C_T$ 15Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 6 – The summing function $S\{L\cdot f\}$ for near and far end coupling20Figure 8 – The effect of the summing functions T_n and T_f for a single braid – $Z_F = 0$ 21Figure 10 – Calculated coupling transfer functions T_n and T_f for a single braid – $Z_F = 0$ 21Figure 11 – Calculated coupling transfer functions T_n and T_f for a single braid – $Im(Z_T)$ 23Figure 12 – $L \cdot S$: the complete length	12	12 Background of the shielded screening attenuation test method for measuring the screening effectiveness of RF connectors and assemblies (IEC 62153-4-7)			.83
12.1.1Surface transfer impedance Z_T 8312.1.2Screening attenuation a_S 8412.1.3Coupling attenuation a_C 8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1in General T. ANDARD PREVIEW8612.2.2in General T. ANDARD PREVIEW8612.2.3Measu(entents and sinulations 1, a1)8812.2.4Influence of contact resistances89BibliographyIEC TS 62153-4-1/201491Intrs:/standards.itch.ai/catalog/standards/sist/80936186-c714-4183- 94b6-Re207bB17/icc-ts-62153-4-1-201491Figure 1 - Total electromagnetic field (\vec{E}_1, \vec{H}_1) 12Figure 3 - Equivalent circuit for the testing of Z_T 15Figure 5 - Electrical quantities in a set-up that is matched at both ends16Figure 6 - The summing function $S\{L \cdot f\}$ for near and far end coupling20Figure 8 - The effect of the summing function on the coupling transfer function of a typical single braid screen cable21Figure 10 - Calculated coupling transfer functions T_n and T_f for a single braid $- Z_F = 0$ 21Figure 11 - Calculated coupling transfer functions T_n and T_f for a single braid $- Im(Z_T)$ 22Figure 12 - L·S: the complete length dependent factor in the coupling function T 24Figure 13 - Transfer impedance of typical cables23Figure 14 - Magnetic coupling in the braid - Complete flux26		12.1	Physical ba	asics	. 83
12.1.2Screening attenuation a_S 8412.1.3Coupling attenuation a_C 8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1Incertain Control (IEC 62153-4-7)8612.2.2.1Incertain Control (IEC 62153-4-7)8612.2.3Measurements and sinulations (IEC 7)8612.2.3Measurements and sinulations (IEC 7)8812.2.4Influence of contact resistances89BibliographyIEC 75 62153-41-1201491https://stndards.itch.ai/catalog/standards/size/80936186-c714-4183- 949-6-Re2275017/cc-ts-62153-4-1-201491Figure 1 - Total electromagnetic field (\vec{E}_1, \vec{H}_1)12Figure 2 - Defining and measuring screening parameters - A triaxial set-up13Figure 3 - Equivalent circuit for the testing of Z_T 15Figure 4 - Equivalent circuit for the testing of $Y_C = j \omega C_T$ 15Figure 5 - Electrical quantities in a set-up that is matched at both ends16Figure 6 - The summing function $SL \cdot f$ for near and far end coupling20Figure 9 - Calculated coupling transfer functions T_{Π} and T_{f} for a single braid $- Z_{F} = 0$ 21Figure 10 - Calculated coupling transfer functions T_{Π} and T_{f} for a single braid $- Z_{F} = 0$ 21Figure 11 - Calculated coupling transfer functions T_{Π} and T_{f} for a single braid $- Im(Z_{T})$ 22Figure 12 - L ·S: the complete length dependent factor in the coupling function T			12.1.1	Surface transfer impedance Z _T	.83
12.1.3Coupling attenuation a_C 8412.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1General TANDARD PREVIEW8612.2.2Measurements and sinulations and8812.2.3Measurements and sinulations and8812.2.4Influence of contact resistances89BibliographyIEC TS 62153-4-1201491https://standards.itch.ai/catalog/standards/sist/80936186-c714-4183-946-68c2275617/ccc-ts-62153-4-12014Figure 1 – Total electromagnetic field (\vec{E}_1, \vec{H}_1) 12Figure 2 – Defining and measuring screening parameters – A triaxial set-up.13Figure 3 – Equivalent circuit for the testing of Z_T 15Figure 4 – Equivalent circuit for the testing of $Y_C = j \omega C_T$ 15Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 6 – The summing function $S\{L\cdotf\}$ for near and far end coupling20Figure 7 – Transfer impedance of a typical single braid screen20Figure 8 – The effect of the summing functions T_{Π} and T_{f} for a single braid $- Z_{F} = 0$ 21Figure 10 – Calculated coupling transfer functions T_{Π} and T_{f} for a single braid $- Im(Z_{T})$ 22Figure 11 – Calculated coupling transfer functions T_{Π} and T_{f} for a single braid $- Im(Z_{T})$ 22Figure 12 – L·S: the complete length dependent factor in the coupling function T 24Figure 13 – Transfer impedance of typical cables2			12.1.2	Screening attenuation a _S	. 84
12.1.4Coupling transfer function8412.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1General			12.1.3	Coupling attenuation a _C	. 84
12.1.5Relationship between length and screening measurements8512.2Tube in tube set-up (IEC 62153-4-7)8612.2.1Influence of contact resistances8612.2.2Procedure tests and sinulations8112.2.3Measurements and sinulations8112.2.4Influence of contact resistances89Bibliography.UC 35 62153-4-1201491https://standards.ite.ai/catalog/standards/sist/80936186-c714-4183- 9466-Re227bB7/icc-ts-62153-4-1-2014Figure 1 – Total electromagnetic field (E_1, H_1) 12Proceeding of Z_T 15Figure 2 – Defining and measuring screening parameters – A triaxial set-up13Figure 3 – Equivalent circuit for the testing of Z_T 15Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 6 – The summing function $S\{L\cdot f\}$ for near and far end coupling20Figure 8 – The effect of the summing function on the coupling transfer function of a typical single braid screen cable21Figure 10 – Calculated coupling transfer functions T_n and T_f for a single braid $- Im(Z_T)$ is positive and $Z_F = -0.5 \times Im(Z_T)$ at high frequencies23Figure 11 – Calculated coupling transfer functions T_n and T_f for a single braid $- Im(Z_T)$ is positive and $Z_F = -0.5 \times Im(Z_T)$ at high frequencies<			12.1.4	Coupling transfer function	. 84
12.2 Tube in tube set-up (IEC 62153-4-7) 86 12.2.1 General TANDARD PREVIEW 86 12.2.2 Procedure 86 12.2.3 Measurements and simulations and invations and iterations and and iterations and iterations and iterations and iterations and iterations and			12.1.5	Relationship between length and screening measurements	.85
12.2.1 General TANDARD PREVIEW 8612.2.2Measurements and simulations and and simulations and and simulations and		12.2	Tube in tub	be set-up (IEC 62153-4-7)	.86
12.2.2Procedure8612.2.3Measurements and simulations8812.2.4Influence of contact resistances89BibliographyLC: TS 62153:4-1:201491https://standards.itch.ai/catalo/standards/sist/80936186-c714-4183-9466-f8c2c27bB7/icc-ts-62153:4-1:2014Figure 1 – Total electromagnetic field (\vec{E}_t, \vec{H}_t) 12Figure 2 – Defining and measuring screening parameters – A triaxial set-up13Figure 3 – Equivalent circuit for the testing of Z_T 15Figure 4 – Equivalent circuit for the testing of $Y_C = j \ \omega C_T$ 15Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 7 – Transfer impedance of a typical single braid screen20Figure 8 – The effect of the summing function on the coupling transfer function of a typical single braid screen cable21Figure 9 – Calculated coupling transfer functions T_n and T_f for a single braid – $Im(Z_T)$ 22Figure 11 – Calculated coupling transfer functions T_n and T_f for a single braid – $Im(Z_T)$ 23Figure 12 – L·S: the complete length dependent factor in the coupling function T 24Figure 13 – Transfer impedance of typical cables23Figure 14 – Magnetic coupling in the braid – Complete flux26			12.2.1	General TANDARD PREVIEW	.86
12.2.3Measurements and simulations 1.2.18812.2.4Influence of contact resistances89BibliographyJEC 18 62153 4-1.201491https://standards.itch.ai/catalog/standards/sist/80936186-c714-4183-94b6-Re2e27bB/7/icc-ts-62153-4-1-2014Figure 1 – Total electromagnetic field (\vec{E}_t, \vec{H}_t) 12Figure 2 – Defining and measuring screening parameters – A triaxial set-up13Figure 3 – Equivalent circuit for the testing of Z_T 15Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 6 – The summing function $S\{L\cdot f\}$ for near and far end coupling20Figure 8 – The effect of the summing function on the coupling transfer function of a21Figure 9 – Calculated coupling transfer functions T_n and T_f for a single braid – Z_F = 021Figure 10 – Calculated coupling transfer functions T_n and T_f for a single braid – Im(Z_T)is positive and Z_F = +0,5 × Im(Z_T) at high frequencies23Figure 12 – $L \cdot S$: the complete length dependent factor in the coupling function T			12.2.2	Procedure	.86
12.2.4Influence of contact resistances89Bibliography.JEC TS 62153:44:1201491https://standards.iteh.ai/catalog/standards/sitv80936186-c714-4183- 94b6-f8e2e27bBf7/iec-ts-62153-4-1-201491Figure 1 – Total electromagnetic field (E_t, H_t) 12Figure 2 – Defining and measuring screening parameters – A triaxial set-up13Figure 3 – Equivalent circuit for the testing of Z_T 15Figure 4 – Equivalent circuit for the testing of $Y_C = j \omega C_T$ 15Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 6 – The summing function $S\{L \cdot f\}$ for near and far end coupling20Figure 8 – The effect of the summing function on the coupling transfer function of a typical single braid screen cable21Figure 9 – Calculated coupling transfer functions T_n and T_f for a single braid – $Z_F = 0$ 21Figure 10 – Calculated coupling transfer functions T_n and T_f for a single braid – Im(Z_T)22Figure 11 – Calculated coupling transfer functions T_n and T_f for a single braid – Im(Z_T)23Figure 12 – $L \cdot S$: the complete length dependent factor in the coupling function T 24Figure 13 – Transfer impedance of typical cables25Figure 14 – Magnetic coupling in the braid – Complete flux26			12.2.3	Measurements and simulations	.88
Bibliography			12.2.4	Influence of contact resistances	.89
Patholic Production Statistics Section Se	Bibli	ography.		<u>IEC TS 62153+4-1:2014</u>	.91
Figure 1 – Total electromagnetic field (\vec{E}_t, \vec{H}_t)			nups	94b6-f8e2c27bf3f7/iec-ts-62153-4-1-2014	
Figure 2 – Defining and measuring screening parameters – A triaxial set-up	Figu	re 1 – To	otal electron	nagnetic field $\left(m{ec{m{ extsf{E}}}}_{t},m{ec{m{ extsf{H}}}}_{t} ight)$. 12
Figure 3 – Equivalent circuit for the testing of Z_T	Figu	re 2 – De	efining and	measuring screening parameters – A triaxial set-up	.13
Figure 4 – Equivalent circuit for the testing of $Y_c = j \omega C_T$	Figu	re 3 – Ec	quivalent cir	cuit for the testing of Z _T	. 15
Figure 5 – Electrical quantities in a set-up that is matched at both ends16Figure 6 – The summing function $S\{L \cdot f\}$ for near and far end coupling20Figure 7 – Transfer impedance of a typical single braid screen20Figure 8 – The effect of the summing function on the coupling transfer function of a typical single braid screen cable21Figure 9 – Calculated coupling transfer functions T_n and T_f for a single braid – $Z_F = 0$ 21Figure 10 – Calculated coupling transfer functions T_n and T_f for a single braid – $Im(Z_T)$ is positive and $Z_F = +0.5 \times Im(Z_T)$ at high frequencies22Figure 11 – Calculated coupling transfer functions T_n and T_f for a single braid – $Im(Z_T)$ is negative and $Z_F = -0.5 \times Im(Z_T)$ at high frequencies23Figure 12 – $L \cdot S$: the complete length dependent factor in the coupling function T 24Figure 13 – Transfer impedance of typical cables25Figure 14 – Magnetic coupling in the braid – Complete flux26	Figu	re 4 – Ec	quivalent cir	cuit for the testing of $Y_{c} = j \ \omega C_{T}$. 15
Figure 6 – The summing function $S\{L \cdot f\}$ for near and far end coupling	Figu	re 5 – El	ectrical qua	ntities in a set-up that is matched at both ends	.16
Figure 7 – Transfer impedance of a typical single braid screen	Figu	re 6 – Th	ne summing	function $S\{L:f\}$ for near and far end coupling	.20
Figure 8 – The effect of the summing function on the coupling transfer function of a typical single braid screen cable	Fiau	re 7 – Tr	ansfer impe	dance of a typical single braid screen	.20
typical single braid screen cable	Figu	re 8 – Th	e effect of t	the summing function on the coupling transfer function of a	
Figure 9 – Calculated coupling transfer functions T_n and T_f for a single braid – $Z_F = 0$ 21 Figure 10 – Calculated coupling transfer functions T_n and T_f for a single braid – Im(Z_T) is positive and $Z_F = +0.5 \times Im(Z_T)$ at high frequencies	typic	al single	braid scree	en cable	.21
Figure 10 – Calculated coupling transfer functions T_n and T_f for a single braid – Im(Z_T) is positive and $Z_F = +0.5 \times Im(Z_T)$ at high frequencies	Fiqu	re 9 – Ca	alculated co	upling transfer functions $T_{\rm p}$ and $T_{\rm f}$ for a single braid – $Z_{\rm F}$ = 0	.21
Figure 11 – Calculated coupling transfer functions T_n and T_f for a single braid – Im(Z_T) is negative and $Z_F = -0.5 \times Im(Z_T)$ at high frequencies	Figu	re 10 – C psitive an	Calculated c d $Z_{r} = +0.5$	oupling transfer functions T_n and T_f for a single braid – Im(Z_T)	22
Figure 12 – $L \cdot S$: the complete length dependent factor in the coupling function <i>T</i>	Figu	re 11 – (Calculated c	ounling transfer functions T_{r} and T_{t} for a single braid – $Im(T_{T})$	
Figure $12 - L \cdot S$: the complete length dependent factor in the coupling function <i>T</i>	is ne	egative a	nd $Z_{\rm F} = -0$,	$5 \times \text{Im}(Z_T)$ at high frequencies	.23
Figure 13 – Transfer impedance of typical cables25 Figure 14 – Magnetic coupling in the braid – Complete flux	Figu	re 12 – <i>L</i>	S: the com	plete length dependent factor in the coupling function T	.24
Figure 14 – Magnetic coupling in the braid – Complete flux	Figu	re 13 – T	ransfer imp	edance of typical cables	.25
	Figu	re 14 – N	lagnetic co	upling in the braid – Complete flux	.26
Figure 15 – Magnetic coupling in the braid – Left-hand lay contribution			.26		
Figure 16 – Magnetic coupling in the braid – Right-hand lay contribution			.26		
Figure 17 – Complex plane, $Z_T = Re Z_T + j Im Z_T$, frequency f as parameter27					
Figure 18 – Magnitude (amplitude), Z _T (<i>f</i>) 27	Figu	re 18 – N	/lagnitude (a	amplitude), <i>Z</i> _T (<i>f</i>)	.27

Figure 19 – Typical Z_T (time) step response of an overbraided and underbraided single braided outer conductor of a coaxial cable	28
Figure 20 – Z _T equivalent circuits of a braided wire screen	29
Figure 21 – Comparison of signal levels in a generic test setup	32
Figure 22 – Triaxial set-up for the measurement of the transfer impedance Z_T	36
Figure 23 – Equivalent circuit of the triaxial set-up	37
Figure 24 – Simulation of the frequency response for g	41
Figure 25 – Simulation of the frequency response for g	41
Figure 26 – Simulation of the frequency response for g	42
Figure 27 – Simulation of the frequency response for <i>g</i>	42
Figure 28 – Simulation of the 3 dB cut off wavelength (L/λ_1)	43
Figure 29 – Interpolation of the simulated 3 dB cut off wavelength (L/λ_1)	43
Figure 30 – 3 dB cut-off frequency length product as a function of the dielectric permittivity of the inner circuit (cable)	44
Figure 31 – Measurement result of the normalised voltage drop of a single braid screen on a solid PE dielectric in the triaxial set-up	45
Figure 32 – Measurement result of the normalised voltage drop of a single braid screen on a foam PE dielectric in the triaxial set-up	46
Figure 33 – Triaxial set-up (measuring tube), double short circuited method	47
Figure 34 – Simulation of the frequency response for g of a cable having solid PE dielectric (ϵ_{r1} =2,3)	48
Figure 35 – Simulation of the frequency response for g of a cable having foamed PE dielectric (ϵ_{r1} =1,6)	48
$\label{eq:Figure 36} Figure 36 - Simulation of the frequency response for ig/of a (cable having formed PE dielectric (\epsilon_{r1}=1,3)$	49
Figure 37 – Simulation of the frequency response for <i>g</i> of a cable having PVC dielectric (ϵ_{r1} =5)	49
Figure 38 – Interpolation of the simulated 3 dB cut off wavelength (L/λ_1)	50
Figure 39 – 3 dB cut-off frequency length product as a function of the dielectric permittivity of the inner circuit (cable)	51
Figure 40 – Simulation of the frequency response for <i>g</i>	52
Figure 41 – Interpolation of the simulated 3 dB cut off wavelength (L/λ_1)	53
Figure 42 – 3 dB cut-off frequency length product as a function of the dielectric permittivity of the inner circuit (cable)	53
Figure 43 – Definition of transfer impedance	55
Figure 44 – Definition of coupling admittance	55
Figure 45 – Triaxial measuring set-up for screening attenuation	56
Figure 46 – Equivalent circuit of the triaxial measuring set-up	56
Figure 47 – Calculated voltage ratio for a typical braided cable screen	58
Figure 48 – Calculated periodic functions for ε_{r1} = 2,3 and ε_{r2} = 1,1	59
Figure 49 – Calculated voltage ratio-typical braided cable screen	59
Figure 50 – Equivalent circuit for an electrical short part of the length Δl and negligible capacitive coupling	61
Figure 51 – $a_{\rm S}$ of single braid screen, cable type RG 58, L = 2 m	63
Figure 52 – a_{s} of single braid screen, cable type RG 58, L = 0,5 m	64
Figure 53 – <i>a</i> _S of cable type HF 75 0,7/4,8 2YCY (solid PE dielectric)	64

Figure 54 – a _S of cable type HF 75 1,0/4,8 02YCY (foam PE dielectric)	65
Figure 55 – <i>a</i> _S of double braid screen, cable type RG 223	65
Figure 56 – Schematic for the measurement of the screening attenuation $a_{\rm S}$	67
Figure 57 – Short circuit between tube and cable screen of the CUT	67
Figure 58 – Triaxial set-up, impedance mismatches	68
Figure 59 – Calculated voltage ratio including multiple reflections caused by the screening case	69
Figure 60 – Calculated voltage ratio including multiple reflections caused by the screening case	69
Figure 61 – Attenuation and return loss of a self-made 50 Ω to 5 Ω impedance matching adapter	70
Figure 62 – equivalent circuit of a load resistance connected to a source	71
Figure 63 – Cross-sectional sketch of a typical feed-through configuration	72
Figure 64 – Cross-sectional sketch of the test fixture with a feed-through connector (a) and EMI gasket (b) under test	73
Figure 65 – Equivalent circuit of the test fixture	74
Figure 66 –Two-port network	74
Figure 67 – TDR measurement of the text-fixture with inserted "Teflon-through" sample	76
Figure 68 – TDR step response from A (Input)-port of test fixture with inserted "Teflon- through" sample	77
Figure 69 – TDR step response from B (Output)-port, of test fixture with inserted "Teflon-through" sample	77
Figure 70 – S-parameter measurement (linear sweep): "Teflon-through" sample	78
Figure 71 – S-parameter measurement (logarithmic sweep); "Teflon-through" sample	78
Figure 72 – S parameter test setup 18e2e27bf3f7/iec-ts-62153-4-1-2014	79
Figure 73 – TDR test setup	79
Figure 74 – Test fixture assembled	79
Figure 75 – Detailed views of the contact area the test fixture and the secondary side of side opened	80
Figure 76 – S ₂₁ measurements	80
Figure 77 – S_{21} measurements of "Teflon-through" and "Sonnenscheibe" feed-through	81
Figure 78 – Transfer impedance ZT of a "Sonnenscheibe" feed-through based on the S_{21} measurement in Figure 77	81
Figure 79 – measurements of a conducting plastic gasket	82
Figure 80 – Z_T of the conducting plastic gasket based on the S_{21} measurement in Figure 79	82
Figure 81 – equivalent circuit of the set-up without DUT	82
Figure 82 – equivalent circuit of the set-up with inserted DUT	83
Figure 83 – Definition of ZT	84
Figure 84 – Calculated coupling transfer function	85
Figure 85 – Principle test set-up for measuring the screening attenuation of a connector with the tube in tube procedure	86
Figure 86 – Principle test set-up for measuring the coupling attenuation of screened balanced or multipin connectors	87
Figure 87 – Principle preparation of balanced or multiconductor connectors for coupling attenuation	87

Figure 88 – Comparison of simulation and measurement, linear frequency scale	88
Figure 89 – Comparison of simulation and measurement, logarithmic frequency scale	89
Figure 90 – Measurement of the coupling attenuation of a CAT6 connector	89
Figure 91 – Contact resistances of the test set-up	90
Figure 92 – Equivalent circuit of the test set-up with contact resistances	90
Table 1 – The coupling transfer function <i>T</i> (coupling function) ^a	18
Table 2 – Screening effectiveness of cable test methods for surface transfer impedance Z _T	34
Table 3 – Load conditions of the different set-ups	38
Table 4 – Parameters of the different set-ups	40
Table 5 – Cut-off frequency length product	44
Table 6 – Typical values for the factor v , for an inner tube diameter of 40 mm and a generator output impedance of 50 Ω	47
Table 7 – Cut-off frequency length product	50
Table 8 – Material combinations and the factor <i>n</i>	52
Table 9 – Cut-off frequency length product	53
Table 10 – Cut-off frequency length product for some typical cables in the different set-	54
Table 11 – Λa in dB for typical cable dielectrics	63
Table 12 – Comparison of results of some coaxial cables a)	66
Table 13 – Cable parameters used for simulation	88
https://standards.iteh.ai/catalog/standards/sist/80936186-c714-4183-	
94b6-f8e2e27bf3f7/iec-ts-62153-4-1-2014	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-1: Electromagnetic compatibility (EMC) – Introduction to electromagnetic screening measurements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (Standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. https://standards.iteh.ai/catalog/standards/sist/80936186-c714-4183-
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC/TS 62153-4-1, which is a technical specification, has been prepared by IEC technical committee 46: Cables, wires, waveguides, R.F. connectors, R.F. and microwave passive components and accessories.

This first edition of technical specification IEC/TS 62153-4-1 cancels and replaces the second edition of the technical report IEC/TR 62153-4-1 published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC/TR 62153-4-1:

- a) comparison of the frequency response of different triaxial test set-ups to measure the transfer impedance of cable screens;
- b) background of the shielded screening attenuation test method (IEC 62153-4-4);
- c) background of the shielded screening attenuation test method for measuring the screening effectiveness of feed-throughs and electromagnetic gaskets (IEC 62153-4-10);
- d) background of the shielded screening attenuation test method for measuring the screening effectiveness of RF connectors and assemblies (IEC 62153-4-7).

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
46/465/DTS	46/492/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62153 series, under the general title: Metallic communication cable test methods, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-1: Electromagnetic compatibility (EMC) – Introduction to electromagnetic (EMC) screening measurements

1 Scope

This part of IEC 62153 deals with screening measurements. Screening (or shielding) is one basic way of achieving electromagnetic compatibility (EMC). However, a confusingly large number of methods and concepts is available to test for the screening quality of cables and related components, and for defining their quality. This technical specification gives a brief introduction to basic concepts and terms trying to reveal the common features of apparently different test methods. It is intended to assist in correct interpretation of test data, and in the better understanding of screening (or shielding) and related specifications and standards.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

(standards.iteh.ai)

IEC 60096-1:1986, Radio-frequency cables – Part 1: General requirements and measuring methods¹

<u>IEC TS 62153-4-1:2014</u>

IEC 60096-4-1, Radio Frequency cables a grant 4. Specification for Superscreened cables – Section 1: General requirements and test methods \$2153-4-1-2014

IEC 60169-1-3, Radio-frequency connectors - Part 1: General requirements and measuring methods - Section Three: Electrical tests and measuring procedures: Screening effectiveness

IEC 61196-1:2005, Coaxial communication cables - Part 1: Generic specification - General, definitions and requirements

IEC 61726, Cable assemblies, cables, connectors and passive microwave components -Screening attenuation measurement by the reverberation chamber method

IEC 62153-4-2, Metallic communication cable test methods - Part 4-2: Electromagnetic compatibility (EMC) - Screening and coupling attenuation - Injection clamp method

IEC 62153-4-3, Metallic communication cable test methods - Part 4-3: Electromagnetic compatibility (EMC) - Surface transfer impedance - Triaxial method

IEC 62153-4-4, Metallic communication cable test methods - Part 4-4: Electromagnetic compatibility (EMC) - Shielded screening attenuation, test method for measuring of the screening attenuation as up to and above 3 GHz

IEC 62153-4-5, Metallic communication cables test methods - Part 4-5: Electromagnetic compatibility (EMC) - Coupling or screening attenuation - Absorbing clamp method

¹ This publication has been withdrawn.

IEC 62153-4-6, Metallic communication cable test methods - Part 4-6: Electromagnetic compatibility (EMC) - Surface transfer impedance - Line injection method

IEC 62153-4-7, Metallic communication cable test methods - Part 4-7: Electromagnetic compatibility (EMC) - Test method for measuring the transfer impedance and the screening - or the coupling attenuation - Tube in tube method

IEC 62153-4-10, Metallic communication cable test methods - Part 4-10: Electromagnetic compatibility (EMC) - Shielded screening attenuation test method for measuring the screening effectiveness of feed-throughs and electromagnetic gaskets double coaxial method

IEC/TR 62152:2009, Transmission properties of cascaded two-ports or quadripols – Background of terms and definitions

EN 50289-1-6: 2002, Communication cables – Specifications for test methods Part 1-6: Electrical test methods – Electromagnetic performance

CISPR 25, Vehicles, boats and internal combustion engines – Radio disturbance characteristics – Limits and methods of measurement for the protection of on-board receivers

3 Symbols interpretation

This clause gives the interpretation of the symbols used throughout this specification.

- α_1, α_2 attenuation constants of primary and secondary circuit (Standards.iten.al)
- *a*_s screening attenuation
- a_{sn} normalized screening atten<u>uation with phase</u> velocity difference not greater than 10 % and 150 Ω^{//}characteristic impedance of the injection line¹⁸³⁻ 94b6-t8e2e27bBf7/iec-ts-62153-4-1-2014 (Z_s =150 Ω and |Δ v/v_1 |=10 % or $\varepsilon_{r1}/\varepsilon_{r2n}$ =1,21)
- c_o velocity of light in free space

 $c_{\rm o} = 3 \times 10^8 \, {\rm m/s}$

- $C_{\rm T}$ through capacitance of the braided cable
- CUT cable or component under test

E e.m.f.

f frequency

f far end

- *f*_c cut-off frequency
- *f*_{cf} far end cut-off frequency
- *f*_{cn} near end cut-off frequency
- Φ_1 the total flux of the magnetic field induced by the disturbing current I_1
- Φ'_{12} the direct leaking magnetic flux
- Φ''_{12} complete magnetic flux in the braid
- I_1, U_1 current and voltage in the primary circuit (feeding system)
- *I*_F current coupled by the feed through capacitance to the secondary system (measuring system)
- \mathcal{E}_{r1} relative permittivity of the injection line (feeding system)
- ε_{r2} relative permittivity of the cable (measuring system)

- *L* cable length, coupling length
- L_1 (external) inductance of the outer circuit
- L₂ (external) inductance of the inner circuit
- M'_{12} mutual inductance related to direct leakage of the magnetic flux Φ'_{12}
- M''_{12} mutual inductance related to the magnetic flux Φ''_{12} (or $\frac{1}{2} \Phi''_{12}$) in the braid

$$M'_{12} = \frac{\Phi'_{12}}{j\omega I_1}$$
 and $M''_{12} = \frac{1}{2} \cdot \frac{\Phi''_{12}}{j\omega I_1}$

 $M_{\rm T}$ effective mutual inductance per unit length for braided screens

 $M_{\rm T} = M'_{12} - M''_{12}$

where \dot{M}_{12} relates to the direct leakage of the magnetic flux and \ddot{M}_{12} relates to the magnetic flux in the braid [24]

- n near end
- P₁ sending power
- P_{2f} far end measured power
- P_{2n} near end measured power
- $P_{\rm r}$ radiated power in the environment of the cable, which is comparable to $P_{2\rm n}+P_{2\rm f}$ of the absorbing clamp method of 12.4 of IEC 61196-1:1995
- $P_{\rm s}$ radiated power in the normalised environment of the cable under test ($Z_{\rm s}$ =150 Ω and $|\Delta v/v_1| = 10\%$ or $\varepsilon_{r1}/\varepsilon_{r2} = 1.21$) h.ai)
- *R* load resistance of secondary circuit (input resistance of receiver)
- R_T screen resistance per unit length log/standards/sist/80936186-c714-4183-
- *T* coupling transfer function-f8e2e27bf3f7/iec-ts-62153-4-1-2014
- *T*_f far end transfer function
- T_n near end transfer function
- U'_2 the disturbing voltage induced by Φ'_{12}
- $U''_{\rm rh}$ the disturbing voltage induced by $\frac{1}{2} \Phi''_{12}$ of the right hand lay contribution
- U''_{lh} the disturbing voltage induced by $\frac{1}{2} \Phi''_{12}$ of the left hand lay contribution
- U''_2 is equal to U''_{rh} and U''_{lh} (= the disturbing voltage induced by $\frac{1}{2} \Phi''_{12}$)
- v phase velocity
- v_1 phase velocity of the "primary" system (feeding system)
- v₂ phase velocity of the "secondary" system (measuring system)
- v_{r1} relative phase velocity of the "primary" system (feeding system)
- v_{r2} relative phase velocity of the "secondary" system (measuring system)
- Z₁ characteristic impedance of the "primary" system (feeding system or line (1))
- Z_2 characteristic impedance of the cable under test (CUT) (measuring system or line (2))
- Z_{1f} terminating impedance of the line (1) in the far end
- Z_{2n} terminating impedance of the line (2) in the near end
- Z_{2f} terminating impedance of the line (2) in the far end (in a matched set-up

$$Z_{1f} = Z_1$$
 and $Z_{2n} = Z_{2f} = Z_2$)

$$Z_{12} = \sqrt{Z_1 Z_2}$$

- Z_a surface impedance of the braided cable
- *Z*_F capacitive coupling impedance per unit length
- Z_f capacitive coupling impedance
- *Z*_T surface transfer impedance per unit length
- Z_{Th} transfer impedance of a tubular homogeneous screen per unit length
- Z_t surface transfer impedance
- Z_{TEn} effective transfer impedance (= | $Z_{\text{F}} + Z_{\text{T}}$ |) per unit length in the near end
- Z_{TEf} effective transfer impedance (= | $Z_F Z_T$ |) per unit length in the far end
- $Z_{\text{TEn,f}}$ effective transfer impedance (= | $Z_{\text{F}} \pm Z_{\text{T}}$ |) per unit length in the near end or in the far end
- Z_{TE} effective transfer impedance (= max | Z_{TEn} , Z_{TEf} |) per unit length
- Z_{te} effective transfer impedance (= max | $Z_f \pm Z_t$ |)
- Z_{ten} normalized effective transfer impedance of a cable

 $(Z_1 = 150 \Omega \text{ and } | v_1 - v_2 | / v_2 \le 10 \%$ velocity difference in relation to velocity of CUT

4 Electromagnetic phenomena

It is assumed that if an electromagnetic field is incident on a screened cable, there is only weak coupling between the external field and that inside, and that the cable diameter is very small compared with both the cable length and the wavelength of the incident field. The superposition of the external incident field and the field scattered by the cable yields the total electromagnetic field (\vec{E}_t, \vec{H}_t) in Figure 1. The total field at the screen's surface may be considered as the source of the coupling: electric field penetrates through apertures by electric or capacitive coupling; also magnetic fields penetrate through apertures by inductive or magnetic coupling. In addition, the induced current in the screen results in conductive or resistive coupling.

Figure 1 – Total electromagnetic field (\vec{E}_t, \vec{H}_t)

$$\left(\vec{E}_{t},\vec{H}_{t}\right) = \left(\vec{E}_{i},\vec{H}_{i}\right) + \left(\vec{E}_{s},\vec{H}_{s}\right)$$
(1)

$$J = \vec{n} \cdot \vec{H}_{t} \tag{2}$$

$$\sigma = \vec{n} \cdot \vec{E}_{\rm t} \varepsilon_{\rm o} \varepsilon_{\rm r} \tag{3}$$

where the symbols are described in the key of Figure 1.

As the field at the surface of the screen is directly related to density of surface current and surface charge, the coupling may be assigned either to the total field (\vec{E}_t, \vec{H}_t) or to the surface current- and charge- densities (*J* and σ). Consequently, the coupling into the cable may be simulated by reproducing, through any suitable means, the surface currents and charges on the screen. Because the cable diameter is assumed to be small, the higher modes may be neglected and it is possible to use an additional coaxial conductor as the injection structure, as shown in Figure 2.

Key (for Figures 2,3,4,5)

(1), (2)	outer circuit (1), tube, respectively inner circuit (2), cable
Z _{1,2}	characteristic impedance of the outer circuit (1), tube, respectively inner circuit (2), cable
^{<i>ɛ</i>} 1,2	dielectric permittivity of the outer circuit (1), tube, respectively inner circuit (2), cable
β _{1,2}	phase constant of the outer circuit (1), tube, respectively inner circuit (2), cable
λ _{1,2}	wave length of the outer circuit (1), tube, respectively inner circuit (2), cable
L	coupling length
D ₁	diameter of injection cylinder-tube
V	voltmeter
A	ammeter
Z _{1n} , Z _{1f}	load resistance at the near end, respectively far end of the outer circuit (1), tube
Z _{2n} , Z _{2f}	load resistance at the near end, respectively far end of the inner circuit (2), cable
E ₁	EMF of the generator
I ₁ , I ₂	current in the outer circuit (1), tube, respectively inner circuit (2), cable
U _{1n} , U _{1f}	voltage at the near end, respectively far end of the outer circuit (1), tube
$U_{\rm 2n},~U_{\rm 2f}$	voltage at the near end, respectively far end of the inner circuit (2), cable

Figure 2 – Defining and measuring screening parameters – A triaxial set-up