

Edition 1.0 2015-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-53: Examinations and measurements – Encircled angular flux (EAF) measurement method based on two-dimensional far field data from step index

multimode waveguide (including logsten)ards/sist/751bdd80-d3a7-489f-89cc-27edf605cb91/iec-61300-3-53-2015

Dispositifs d'interconnexion et composants passifs fibroniques – Procédures fondamentales d'essais et de mesures –

Partie 3-53: Examens et mesures – Méthode de mesure du flux angulaire inscrit (EAF) fondée sur les données bidimensionnelles de champ lointain d'un guide d'ondes multimodal à saut d'indice (fibre incluse)

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once 0______a month by email.

IEC Customer Service Centre - webstore.iec.chi/csc/b91/iec-6 If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Glossary - std.iec.ch/glossary

367 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Edition 1.0 2015-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fibre optic interconnecting devices and passive components – Basic test and measurement procedures (standards.iteh.ai) Part 3-53: Examinations and measurements – Encircled angular flux (EAF) measurement method based on two-dimensional far field data from step index multimode waveguide (including fibre) ards/sist/751bdd80-d3a7-489f-89cc-27edf605cb91/iec-61300-3-53-2015

Dispositifs d'interconnexion et composants passifs fibroniques – Procédures fondamentales d'essais et de mesures –

Partie 3-53: Examens et mesures – Méthode de mesure du flux angulaire inscrit (EAF) fondée sur les données bidimensionnelles de champ lointain d'un guide d'ondes multimodal à saut d'indice (fibre incluse)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.180.20

ISBN 978-2-8322-7194-0

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWO	RD	4				
1	Scop	e	6				
2	Norm	ative references	6				
3	Term	s and definitions	6				
4	Stan	dard atmospheric conditions	7				
5	Δnna	ratus	7				
0	лрра 5 1	Conorol	7				
	5.1 5.0	Measurement method 1, () long imaging	1				
	5.Z		٥ ە				
	5.2.1	General	0 0				
	523	EED optical system	0 و				
	524	Comora	0 0				
	525	Computer (EAE analyser module)	٥				
	526	Calibration light source					
	5.3	Measurement method 2: direct imaging	۰.5 م				
	531	General	 9				
	532	Micro-positioner	0				
	5.3.3		9				
	5.3.4	Alignment	9				
	5.3.5	Detector (standards iteh ai)	9				
	5.3.6	Single-mode fibre	10				
	5.3.7	Imaging device	10				
6	Sam	bling and specimensds.itch.ai/catalog/standards/sist/751bdd80-d3a7-489f-89cc-	11				
7	Geor	27edf605cb91/iec-61300-3-53-2015	11				
8	Meas	urement procedure	12				
Ũ	8 1	Safety	12				
	8.2	Far field image acquisition	12				
	821	General	12				
	822	Waveguide end-face alignment	12				
	823	Light source image acquisition	12				
	8.3	Removal of background noise	13				
	8.4	Centre determination	13				
	8.4.1	General	13				
	8.4.2	Method A: Optical centre determination	13				
	8.4.3	Method B: Mechanical centre determination	14				
	8.5	Computation of encircled angular flux	14				
9	Resu	lts	16				
	9.1	Information available with each measurement	16				
	9.2	Information available upon request	16				
10	Detai	Is to be specified	17				
Ar	Annex A (informative) System requirements: measurement method 1 – Field optical						
	system						
	A.1	General	18				
	A.2	Requirements	18				

IEC 61300-3-53:2015 © IEC 2015 - 3 -

Annex B ((informative) System requirements: measurement method 2 – Direct imaging	. 19		
B.1	General	. 19		
B.2	Requirements	. 19		
Bibliography				

Figure 1 – Apparatus configuration: Measurement method 1: $f\theta$ lens imaging	8
Figure 2 – Far field optical system diagram	8
Figure 3 – Apparatus configuration: measurement method 2 – Direct imaging using an integrating sphere	10
Figure 4 – Apparatus configuration: measurement method 2 – Direct imaging using a single-mode fibre	10
Figure 5 – Apparatus configuration: measurement method 2 – Direct imaging using an imaging device	11
Figure 6 – Calibration apparatus example	12
Figure 7 – Acquired far field image	13
Figure 8 – Acquired far field image with false colour	13
Figure 9 – Optical centre determination	14
Figure 10 – Coordinate conversion to polar coordinate on the image sensor plane	15
Figure 11 – Standard encircled angular flux chart	16
Figure A.1 – An example of an optical system using an <i>f</i> 0 lens (standards.iteh.ai)	18

<u>IEC 61300-3-53:2015</u> https://standards.iteh.ai/catalog/standards/sist/751bdd80-d3a7-489f-89cc-27edf605cb91/iec-61300-3-53-2015 - 4 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS – BASIC TEST AND MEASUREMENT PROCEDURES –

Part 3-53: Examinations and measurements – Encircled angular flux (EAF) measurement method based on two-dimensional far field data from step index multimode waveguide (including fibre)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. 27edt605cb91/icc-61300-3-53-2015
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61300-3-53 has been prepared by subcommittee 86B: Fibre optic interconnecting devices and passive components, of IEC technical committee 86: Fibre optics.

This bilingual version (2019-07) corresponds to the English version, published in 2015-02.

- 5 -

The text of this standard is based on the following documents:

FDIS	Report on voting
86B/3850/FDIS	86B/3875/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61300 series, published under the general title, Fibre optic interconnecting and passive components – Basic test and measurement procedures, can be found on the IEC website.

The French version of this standard has not been voted upon.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed, ٠
- withdrawn,
- replaced by a revised edition, or ANDARD PREVIEW
- amended.

(standards.iteh.ai)

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS – BASIC TEST AND MEASUREMENT PROCEDURES –

- 6 -

Part 3-53: Examinations and measurements – Encircled angular flux (EAF) measurement method based on two-dimensional far field data from step index multimode waveguide (including fibre)

1 Scope

This part of IEC 61300 is intended to characterize the encircled angular flux of measurement step index multimode waveguide light sources, in which most of the transverse modes are excited. The term waveguide is understood to include both channel waveguides and optical fibres but not slab waveguides in this standard.

Encircled angular flux (EAF) is the fraction of the total optical power radiating from a step index multimode waveguide's core within a certain solid angle. The EAF is measured as a function of the numerical aperture full angle. The basic approach is to collect, for every measurement, two dimensional far field data using a calibrated camera and to convert them mathematically into encircled angular flux.

(standards.iteh.ai)

2 Normative references

IEC 61300-3-53:2015

The following documents, in whole of in part, are normalized referenced in this document and are indispensable for its application. For dated references, long the latest edition of the referenced document (including any amendments) applies.

IEC 60825-1, Safety of laser products – Part 1: Equipment classification and requirements

IEC 61300-1, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 1: General and guidance

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

encircled angular flux

EAF

fraction of the total optical power radiating from a step index multimode waveguide's core within a certain solid angle

3.2

fθ lens

lens converting the angle of incidence of the input beam, θ , into the output beam height, h

Note 1 to entry: The relationship between them is $h = f\theta$, where f is the focal length of the lens.

3.3 numerical aperture

NA

sine of the vertex half-angle of the largest cone of meridional rays that can enter or leave the core of an optical waveguide, multiplied by the refractive index of the medium in which the cone is located.

- 7 -

3.4 far field pattern

FFP

angular distribution of light radiating from a waveguide's core, which corresponds to the optical power distribution on a plane normal to the waveguide axis some distance from its end facet

Note 1 to entry: The distance depends on the largest waveguide cross-section, a, the wavelength, lambda and the angle, φ , to the optical axis. It is abbreviated to FFP. In the far field region the shape of the distribution does not change as the distance from the waveguide end facet increases; the distribution only scales in size with distance, L.

$$L >> \frac{2a^2(\cos \varphi)^2}{\lambda}$$

3.5 far field image far field pattern formed on an i

far field pattern formed on an imaging device ARD PREVIEW

3.6

3.7

centroid optical centre of the far field image

age <u>IEC 61300-3-53:2015</u>

(standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/751bdd80-d3a7-489f-89cc-27edf605cb91/iec-61300-3-53-2015

neutral density filter

ND filter that attenuates light of all colours equally

4 Standard atmospheric conditions

The standard atmospheric conditions are specified in IEC 61300-1.

5 Apparatus

5.1 General

The optical source multimode waveguide shall be long enough to ensure that all cladding modes are stripped by passage through the waveguide. Often the fibre coating or tight buffer is sufficient to perform this function. Alternatively a cladding mode stripper shall be used in the source launch optical multimode fibre. An example of a typical cladding mode stripper which would be suitable for optical fibre is sufficient windings of the fibre around a mandrel of an appropriate diameter. The windings also have a more important essential effect to fully fill the transverse modes across the maximum mode field diameter. It should be checked that all of the transverse modes of the fibre are sufficiently well excited. This can be done by comparing the FFPs for different lengths of the launch fibre or different light sources. Once the FFP no longer changes in form as the launch fibre length is increased there is no need to increase the length further.

5.2 Measurement method 1: $f\theta$ lens imaging

5.2.1 General

In theory, this measurement method, which is effectively a coherent optical method to Fourier Transform the near field to the far field using a lens, does not operate well using very wideband optical sources. Experimentally it has been shown to operate sufficiently well for sources up to 30 nm bandwidth which are most commonly used.

Figure 1 below shows the apparatus configuration. The measurement system consists of a micro-positioner, a far field broadband optical system, a camera and computer (beam analysis module). An appropriate type of camera (detector) should be chosen to suit the wavelength.

iTeh STANDARD PREVIEW

Figure 1 – Apparatus configuration: Measurement method 1: $f\theta$ lens imaging

5.2.2 Micro-positioner

The micro-positioner shall have a function of fixing an optical waveguide and moving in three directions (X, Y, Z). In addition yaw and pitch controls are recommended.

5.2.3 FFP optical system

As shown in Figure 2, basically, an $f\theta$ lens can directly convert input the light from the multimode waveguide to a far field image, however, scaling the far field image in order to fit the image sensor in the camera and adjustment of the light intensity in order to prevent saturation may be required. The FFP optical system shall be chosen to operate at the measurement wavelength across the required measurement bandwidth to match that of the detection system. See Annex A for more information.

Figure 2 – Far field optical system diagram

5.2.4 Camera

Although the detector is typically a charge-coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) camera, other types of array cameras may be considered. The type of image sensor shall be chosen by the measurement wavelength. Absolute radiometric measurement of flux (optical power flow) is not required.

5.2.5 Computer (EAF analyser module)

Since the acquired image contains many thousands of pixels, and the image conversion into encircled angular flux requires substantial computation, a computer is required. The computer will usually be connected to the image sensor through an image acquisition board (or with an embedded image acquisition circuit) and installed beam analysis software.

5.2.6 Calibration light source

Calibration light source is used when calibrating the apparatus in Clause 7. The calibration source is assumed to be broadband and incoherent so that speckle is not a problem, and to have a sufficiently symmetrical far field distribution so that the calculated centroid of the far field indicates the location of the optical centre axis of the waveguide with sufficient accuracy for the purposes of this standard.

5.3 Measurement method 2: direct imaging

5.3.1 General

There are three alternative methods to detect the far field. One uses a detector, one uses a single-mode fibre and the other uses a camera.

5.3.2 Micro-positioner

Both the input step index multimode waveguide source and the photo detector (PD) shall be mounted on high precision motorized translation stages for accurate alignment with submicron step adjustment to maximize the light through the waveguide.

5.3.3 Optical power

(standards.iteh.ai)

The output from the multimode waveguide shall be set fo a power level of 0 dBm.

https://standards.iteh.ai/catalog/standards/sist/751bdd80-d3a7-489f-89cc-27edf605cb91/iec-61300-3-53-2015

5.3.4 Alignment

Firstly, the input waveguide and detector shall be properly aligned to obtain the maximum output power.

5.3.5 Detector

An integrating sphere PD preceded by a pinhole shall be placed sufficiently far from the optical source launch multimode waveguide facet so as to be in the Fraunhofer or far field. The Fraunhofer far field occurs when $L >> D^2/\lambda$ where L is the distance of the detection plane from the waveguide end facet, D is the diameter of the multimode waveguide core or strictly mode field diameter and λ is the wavelength. For example, a large area integrating sphere PD preceded by a pinhole, shown in Figure 3, shall be used to measure the integrated output optical power so avoiding inconsistencies due to laser speckle and spatial variation of efficiency across the photodiode detector. In this method the integrating sphere and its pinhole are moved in X and Y to sample the far field. This has the advantage that a very large area can be sampled. Moreover, it can also be moved in an arc on a goniometer so that its input facet always faces the centre of the core of the multimode waveguide output. This an also be used to calibrate the far field in the $f\theta$ imaging method as the far field is measured directly as a function of angle. If the detector aperture is instead moved across an XY plane then the lateral position from the optical axis shall be converted to an angle of divergence from the optical axis. The angle is the arctangent of the ratio of the lateral X or Y position to the distance L. Therefore, considerable care needs to be taken to accurately measure L.

- 10 -

Figure 3 – Apparatus configuration: measurement method 2 – Direct imaging using an integrating sphere

5.3.6 Single-mode fibre

The single-mode optical fibre shall be placed sufficiently far from the optical source launch multimode waveguide facet so as to be in the Fraunhofer or far field. The Fraunhofer far field occurs when $L >> D^2/\lambda$ where L is the distance of the detection plane from the waveguide end facet, D is the diameter of the multimode waveguide core or strictly mode field diameter and λ is the wavelength. For example, a single-mode fibre attached to a detector, shown in Figure 4, shall be placed in the far field and moved in X and Y to sample the far field. This has the advantage that a very large area can be sampled. Moreover, it can also be moved in an arc on a goniometer so that its input facet always faces the centre of the core of the multimode waveguide output. This goniometric method can also be used to calibrate the far field in the f θ imaging method as the far field is measured directly as a function of angle. If the single-mode fibre core is instead moved across an XY plane then the lateral position from the optical axis shall be converted to an angle of divergence from the optical axis. The angle is the arctangent of the ratio of the lateral X or Y position to the distance L. Therefore, considerable care needs to be taken to accurately measure L.

Figure 4 – Apparatus configuration: measurement method 2 – Direct imaging using a single-mode fibre

5.3.7 Imaging device

An imaging device plane without any lens system shall be placed sufficiently far from the optical source launch multimode waveguide facet so as to be in the Fraunhofer or far field. The Fraunhofer far field occurs when $L >> D^2/\lambda$ where L is the distance of the detection plane from the waveguide end facet, D is the diameter of the multimode waveguide core or strictly mode field diameter and λ is the wavelength. For example, an imaging device, shown in Figure 5, shall be placed L away from the exit facet of the multimode waveguide. The distance L between the imaging device and the waveguide end facet is much larger than the core size of the waveguide, so the field captured is the far field distribution. The imaging device may for example, be a CCD camera with its lens removed so that the light distribution falls directly on the CCD chip. The lateral position from the optical axis in the far field shall be converted to an angle of divergence from the optical axis. The angle is the arctangent of the ratio of the lateral X or Y position to the distance L.

Figure 5 – Apparatus configuration: measurement method 2 – Direct imaging using an imaging device

6 Sampling and specimens

7

Light sources to be tested shall be chosen and prepared by the user of this standard, who shall document the sampling and preparation procedures used. The only requirements on the light sources under test are that they have an operating wavelength compatible with the detector and f θ lens, and have optical connectors or splices compatible with the input port of the apparatus. The construction details of the light sources are otherwise unspecified.

Geometric calibration (standards.iteh.ai)

Calibration of the apparatus is critical to the accuracy of this measurement procedure. Calibration shall be performed periodically<u>alf</u> the calibration is known to drift significantly during a measurement interval, the drift of the source(s) shall be identified and eliminated. If the apparatus is disassembled on its components in or affecting the optical path are otherwise manipulated, calibration shall be performed before measurements are made.

The purpose of geometric calibration is to obtain the measurement data needed to compute the conversion factor. The factor will be used to convert camera coordinates to light launching angle relative to the optical axis of optical waveguide.

Calibration is performed to measure the conversion factor that relates the light launching angle to the pixel of the detector corresponding to this angle. The factor has a unit of degree per pixel, and will be used to convert camera coordinates to far field angle coordinates. The collimated light source for geometric calibration, shown in Figure 6, shall have a spectral power distribution similar to that of the measurement light source and the central wavelength within 30 nm around the nominal wavelength of the measurement light source.

An example of the calibration procedure is stated below:

Step 1 Set a collimated light source whose incident angle relative to the optic axis of the far field optical system can be precisely controlled. An example of the calibration apparatus is shown in Figure 6.

Step 2 Measure the conversion factors from the whole range of angles to be measured with an interval small enough (e.g. 1°) to enable accurate interpolation.