

Designation: B 210M - 02

METRIC

Standard Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes [Metric]¹

This standard is issued under the fixed designation B 210M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

- 1.1 This specification covers aluminum and aluminum-alloy drawn seamless tubes in straight lengths and coils for general purpose and pressure applications in alloys (Note 2), tempers, and thicknesses shown in Table 2. Coiled tubes are generally available only as round tubes with a wall thickness not exceeding 2.00 mm and only in nonheat-treatable alloys.
- 1.2 Alloy and temper designations are in accordance with ANSI H35.1M. The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E 527.
- 1.3 Preferred metric sizes are in accordance with ANSI B 32.5.
- Note 1—See Specification B 483M for aluminum and aluminum-alloy drawn tubes for general purpose applications, Specification B 234M for aluminum-alloy drawn seamless tubes for condensers and heat exchangers, and Specification B 241/B 241M for aluminum-alloy seamless pipe and seamless extruded tube.
- Note 2—Throughout this specification use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.
- 1.4 This specification is the metric counterpart of Specification B 210.
- 1.5 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:

- B 234 Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes for Condensers and Heat Exchangers²
- B 241/B 241M Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube²
- B 483 Specification for Aluminum and Aluminum-Alloy Drawn Tubes for General Purpose Applications²
- B 557M Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products [Metric]²
- B 660 Practices for Packaging/Packing of Aluminum and Magnesium Products²
- B 666/B 666M Practice for Identification Marking of Aluminum and Magnesium Products²
- B 918 Practice for Heat Treatment of Wrought Aluminum Alloys²
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications³
- E 34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys⁴ 2 d 1 ba/asim-b2 10m-02
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁴
- E 215 Practice for Standardizing Equipment for Electromagnetic Examination of Seamless Aluminum-Alloy Tube⁵
- E 227 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique⁴
- E 527 Practice for Numbering Metals and Alloys (UNS)⁶
- E 607 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique, Nitrogen Atmosphere⁴

¹ This specification is under the jurisdiction of ASTM Committee B07 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products.

Current edition approved Oct. 10, 2002. Published December 2002. Originally approved in 1980. Last previous edition approved in 2000 as B 210M-00.

² Annual Book of ASTM Standards, Vol 02.02.

³ Annual Book of ASTM Standards, Vol 14.02.

⁴ Annual Book of ASTM Standards, Vol 03.05.

⁵ Annual Book of ASTM Standards, Vol 03.03.

⁶ Annual Book of ASTM Standards, Vol 01.01.

TABLE 1 Chemical Composition Limits^{ABC}

Allay Cilia	0:::	lu	0		M	01	7:	T:4 :	Other E	lements ^D	Aluminum
Alloy	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zinc	Titanium	Each	Each Total ^E	– min
1060	0.25	0.35	0.05	0.03	0.03		0.05	0.03	0.03 ^F		99.60 min ^G
1100	0.95 Si	+ Fe	0.05-0.20	0.05			0.10		0.05	0.15	99.00 min ^G
2011	0.40	0.7	5.0-6.0				0.30		0.05 ^H	0.15	remainder
2014	0.50 - 1.2	0.7	3.9-5.0	0.40-1.2	0.20-0.8	0.10	0.25	0.15	0.05	0.15	remainder
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
3003 Alclad 3003 ¹	0.6	0.7	0.05-0.20	1.0–1.5		•••	0.10		0.05	0.15	remainder
3102 Alclad 3102 ¹	0.40	0.7	0.10	0.05-0.40		•••	0.30	0.10	0.05	0.15	remainder
3303 Alclad 3303 ⁷	0.6	0.7	0.05-0.20	1.0–1.5			0.30		0.05	0.15	remainder
5005	0.30	0.7	0.20	0.20	0.50-1.1	0.10	0.25		0.05	0.15	remainder
5050	0.40	0.7	0.20	0.10	1.1-1.8	0.10	0.25		0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5083	0.40	0.40	0.10	0.40-1.0	4.0-4.9	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5-4.5	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20	0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50-1.0	4.7-5.5	0.05-0.20	0.25	0.20	0.05	0.15	remainder
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.35	0.25	0.15	0.05	0.15	remainder
6063	0.20-0.6	0.35	0.10	0.10	0.45-0.9	0.10	0.10	0.10	0.05	0.15	remainder
6262	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.14	0.25	0.15	0.05^{J}	0.15	remainder
7072 cladding ^K	0.7 Si	+ Fe	0.10	0.10	0.10		0.8-1.3		0.05	0.15	remainder
7075	0.40	0.50	1.2-2.0	0.30	2.1-2.9	0.18-0.28	5.1-6.1	0.20	0.05	0.15	remainder

^ALimits are in weight percent maximum unless shown as a range or otherwise stated.

https://standards.iteh.ai/catalog/standards/sist/964bcb31-4aca-473e-a122-c12222d1c1ba/astm-b210m-02

- E 716 Practices for Sampling Aluminum and Aluminum Alloys for Spectrochemical Analysis⁴
- E 1004 Practice for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method⁵
- E 1251 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Argon Atmosphere, Point-to-Plane, Unipolar Self-Initiating Capacitor Discharge⁴
- 2.3 ANSI Standards:
- B 32.5 Preferred Metric Sizes For Tubular Metal Products Other Than Pipe⁷
- H35.1M Alloy and Temper Designation Systems for Aluminum²
- H35.2M Dimensional Tolerances for Aluminum Mill Products²
- 2.4 Military Standard:
- MIL-STD-129 Marking for Shipment and Storage⁸
- 2.5 AMS Specification:

2.6 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)⁸

3. Terminology

- 3.1 Definitions:
- 3.1.1 *tube*—a hollow wrought product that is long in relation to its cross section, which is round, a regular hexagon, a regular octagon, elliptical, or square or rectangular with sharp or rounded corners, and that has uniform wall thickness except as may be affected by corner radii.
- 3.1.2 *drawn seamless tube*—a tube produced from hollow extrusion ingot and brought to final dimensions by drawing through a die.
- 3.1.3 alclad tube—a composite tube composed of an aluminum-alloy core having on either the inside or outside surface a metallurgically bonded aluminum or aluminum-alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.

^BAnalysis shall be made for the elements for which limits are shown in this table.

^CFor purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E 29.

^DOthers includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered non-conforming.

EOther elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

FVanadium 0.05 % max.

^GThe aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

^HBismuth and lead each 0.20 – 0.6 %.

^{&#}x27;Alloy clad with Alloy 7072.

^JBismuth and lead each 0.40-0.7 %

^KComposition of cladding alloy as applied during the course of manufacture. The samples from finished tube shall not be required to conform to these limits.

⁷ Available from American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036.

⁸ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials⁹

⁹ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001.

- 3.1.4 *producer*—the primary manufacturer of the material.
- 3.1.5 *supplier*—includes only the category of jobbers and distributors as distinct from producers.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *capable of*—The term *capable of* as used in this specification means that the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or kilograms,
 - 4.1.3 Alloy (Section 7),
 - 4.1.4 Temper (Section 8),

TABLE 2 Tensile Property Limits^{A,B}

	Specified W	all Thickness ^C	Tensile S	Strength, MPa		eld Strength ^D % offset), MPa		Elongation, ^E min, %	
Temper							- " O "	Cut-Ou	ıt Specimen
Tompor	Over	Through	Min	Max	Min	Max	Full-Section Specimen in 50 mm	in 50 mm	in 5 \times Diameter (5.65 \sqrt{A})
				Aluminum	1060 ^F				
0	0.45	12.50	60	95	15				
H12	0.45	12.50	70		30				
H14	0.45	12.50	85		70				
H18	0.45	12.50	110		90		•••		
H113 ^G	0.45	12.50	60		15				
F	All								
			- 17	Aluminum		arde			
0	0.45	12.50	75	105	25	lai u <u>s</u>			
H12	0.45	12.50	95		75				
H14	0.45	12.50	110	//ctand	95	de itah	91)		
H16	0.45	12.50	130	//Stallu	115	M2.1#CI	l.all)	•••	
H18	0.45	12.50	150		140				
H113 ^{<i>G</i>}	0.45	12.50	75	nimiant	25	rovious	···		
F	All		DU	<u>cument</u>	, ,	review			
				Alloy 20)11				
T3	0.45	1.20	325		275				
	1.20	12.50	325	ASIM B2	275	<u>-02</u>	10	8	7
T4511	0.45	1.20	305	a/gigt/05/1hah2 1	170	0 4720 5122	.1222241	al hallagtm	h210m; 02
		1.al/C6.50 Og/S	305	8/8181/90400031	170	a-4/36- <u>a</u> 122-	C1220/201	clba ₁₈ stm-	b210n ₁₆ 02
	6.50	12.50	305		170		20	20	18
				Alloy 20	14				
0	0.45	12.50		220		110			
T4, T42 ^H	0.45	0.63	370		205		10		
	0.63	1.20	370		205		12	10	
	1.20	6.30	370		205		14	10	
	6.30	12.50	370		205		16	12	10
T6, T62 ^H	0.45	0.63	450		380		7		
	0.63	1.20	450		380		7	6	
	1.20	6.30	450		380		8	7	
	6.30	12.50	450	•••	380	•••	9	8	7
				Alloy 20	24				
0	0.45	12.50		220		100			
T3	0.45	0.63	440	•••	290		10	•••	
	0.63	1.20	440	•••	290		12	10	
	1.20	6.30	440		290		14	10	
T40H	6.30	12.50	440		290		16	12	10
T42 ^H	0.45	0.63	440		275		10		
	0.63	1.20	440	•••	275	***	12	10	•••
	1.20	6.30	440	•••	275	***	14	10	
	6.30	12.50	440		275		16	12	10
				Alloy 30					
0	0.25	0.63	95	130	35				
	0.63	1.20	95	130	35		30	20	
	1.20	6.30	95	130	35		35	25	
	6.30	12.50	95	130	35			30	27
H12	0.25	0.63	120		85				
	0.63	1.20	120		85				

TABLE 2 Continued

	Specified W	all Thickness ^C	Tensile S	Strength, MPa		trength ^D fset), MPa		Elongation, ^E mi	in, %
To man - ::	-							Cut-Ou	ut Specimen
Temper							Full-Section -		•
	Over	Through	Min	Max	Min	Max	Specimen in	. 50	in 5 × Diam-
							50 mm	in 50 mm	eter
									$(5.65 \sqrt{A})$
114		0.63	140		115		3		
	0.63	1.20	140		115		5	3	
	1.20	6.30	140		115		8	4	
	6.30	12.50	140		115				
116	0.25	0.63	165		145				
	0.63	1.20	165		145		3	2	
	1.20	6.30	165		145		5	4	
	6.30	12.50	165		145				
118		0.63	185		165		2		
	0.63	1.20	185		165		3	2	
	1.20	6.30	185		165		5	3	
	6.30	12.50	185		165				
1113 ^{<i>G</i>}	0.25	12.50	95		35		•••		•••
:	All	12.50		•••			•••		
	All						•••	•••	•••
	0.05	0.00	00		olad 3003 ^F				
)	0.25	0.63	90	125	30		30	20	
	0.63	1.20	90	125	30	***	30	20	•••
	1.20	6.30	90	125	30		35	25	
	6.30	12.50	90	125	30			30	27
114	0.25	0.63	135		110				
	0.63	1.20	135		110		5		
	1.20	6.30	135		110		8	4	
	6.30	12.50	135		110				
l18	0.25	12.50	180	en511	160	FOLS			
l113 ^{<i>G</i>}	1.20	12.50	90		30				
	All			//				•••	***
		(nt	tps:	Alloy	3102 ^F	s.ite	n.ai)		
)	0.45	0.63	75	115	25 ^D	••••			
	0.63	1.20	75	115	25 ^D		30	20	
	1.20	1.70	75	115	25 ^D		35	25	***
				Alloy Ald	olad 3102 ^F				
)	0.45	0.63	70	A 115	25				
	0.63	1.20	70	115	25		30	20	
https://s	standa 1.20 itel	n.ai/c1.70log/	stand ⁷⁰ rds	s/sist/9115 bcb	31_425 _{0a-4}	-/3e-a122	2-c12352d1	elba ²⁵ astm-	b210m-02
)				Alloy	3303 ^F				
	0.05	0.62	O.E	120	25				
,	0.25	0.63	95	130	35				
,	0.63	1.20	95	130	35		30	20	•••
				130 130	35 35				
	0.63 1.20	1.20 1.70	95 95	130 130 Alloy Ald	35 35 clad 3303 ^D		30	20	•••
	0.63 1.20 0.25	1.20 1.70	95 95 90	130 130 Alloy Ald	35 35 clad 3303 ^D 30		30 35 	20 25 	
	0.63 1.20 0.25 0.63	1.20 1.70 0.63 1.20	95 95 90 90	130 130 Alloy Ald 130 130	35 35 clad 3303 ^D 30 30		30 35 30	20 25 20	
	0.63 1.20 0.25	1.20 1.70	95 95 90	130 130 Alloy Ald 130 130 130	35 35 Slad 3303 ^D 30 30 30		30 35 	20 25 	
)	0.63 1.20 0.25 0.63 1.20	1.20 1.70 0.63 1.20 1.70	95 95 90 90 90	130 130 Alloy Ald 130 130 130 Alloy	35 35 clad 3303 ^D 30 30 30 7 5005 ^F		30 35 30 35	20 25 20 25	
)	0.63 1.20 0.25 0.63	1.20 1.70 0.63 1.20	95 95 90 90	130 130 Alloy Ald 130 130 130	35 35 Slad 3303 ^D 30 30 30		30 35 30	20 25 20	
)	0.63 1.20 0.25 0.63 1.20	1.20 1.70 0.63 1.20 1.70	95 95 90 90 90	130 130 Alloy Ald 130 130 130 Alloy	35 35 clad 3303 ^D 30 30 30 7 5005 ^F 35		30 35 30 35	20 25 20 25	
)	0.63 1.20 0.25 0.63 1.20 0.45 All	1.20 1.70 0.63 1.20 1.70	95 95 90 90 90 90	130 130 Alloy Ald 130 130 130 Alloy 145 	35 35 clad 3303 ^D 30 30 30 5005 ^F 35 		30 35 30 35 	20 25 20 25	
)	0.63 1.20 0.25 0.63 1.20 0.45 All	1.20 1.70 0.63 1.20 1.70	95 95 90 90 90 105 	130 130 Alloy Ald 130 130 130 Alloy 145 	35 35 clad 3303 ^D 30 30 30 5005 ^F 35 		30 35 30 35 	20 25 20 25 	
)	0.63 1.20 0.25 0.63 1.20 0.45 All	1.20 1.70 0.63 1.20 1.70 12.50	95 95 90 90 90 105 	130 130 Alloy Ald 130 130 130 Alloy 145 Alloy	35 35 clad 3303 ^D 30 30 30 5005 ^F 35 40 110		30 35 30 35 	20 25 20 25 	
)))))))))))))	0.63 1.20 0.25 0.63 1.20 0.45 All	1.20 1.70 0.63 1.20 1.70 12.50	95 95 90 90 90 90 105 	130 130 Alloy Ald 130 130 130 Alloy 145 Alloy	35 35 clad 3303 ^D 30 30 30 7 5005 ^F 35 9 5050 ^F 40 110 140		30 35 30 35 	20 25 20 25 	
)) 132 134 136	0.63 1.20 0.25 0.63 1.20 0.45 All	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50	95 95 90 90 90 90 105 	130 130 Alloy Ald 130 130 130 Alloy 145 Alloy 165 	35 35 clad 3303 ^D 30 30 30 55005 ^F 35 55050 ^F 40 110 140 150		30 35 30 35 	20 25 20 25 	
)) 132 134 136 138	0.63 1.20 0.25 0.63 1.20 0.45 All 0.45 0.45 0.45 0.45 0.45	1.20 1.70 0.63 1.20 1.70 12.50	95 95 90 90 90 90 105 	130 130 Alloy Ald 130 130 130 Alloy 145 Alloy	35 35 clad 3303 ^D 30 30 30 7 5005 ^F 35 7 5050 ^F 40 110 140 150 165		30 35 30 35 	20 25 20 25 	
)))) (32 (34 (36 (38	0.63 1.20 0.25 0.63 1.20 0.45 All	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50	95 95 90 90 90 90 105 	130 130 Alloy Alc 130 130 130 Alloy 145 Alloy 165	35 35 36lad 3303 ^D 30 30 30 55005 ^F 35 55505 ^F 40 110 140 150 165 		30 35 30 35 	20 25 20 25 	
)) 132 134 136 138	0.63 1.20 0.25 0.63 1.20 0.45 All 0.45 0.45 0.45 0.45 0.45 All	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50 12.50	95 95 90 90 90 105 125 150 170 185 200 	130 130 Alloy Alc 130 130 130 Alloy 145 Alloy 165 Alloy	35 35 36lad 3303 ^D 30 30 30 30 5005 ^F 35 40 110 140 150 165 		30 35 30 35 	20 25 20 25 	
)) 132 134 136 138 :	0.63 1.20 0.25 0.63 1.20 0.45 All 0.45 0.45 0.45 0.45 0.45 0.45	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50 12.50	95 95 90 90 90 105 125 150 170 185 200 	130 130 Alloy Alc 130 130 130 130 Alloy 145 Alloy 165 Alloy 240	35 35 36lad 3303 ^D 30 30 30 30 5005 ^F 35 40 110 140 150 165 5052 ^F 70		30 35 30 35 	20 25 20 25 	
) H32 H34 H36 H38 H38	0.63 1.20 0.25 0.63 1.20 0.45 All 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50 12.50 12.50	95 95 90 90 90 90 105 125 150 170 185 200 	130 130 Alloy Alc 130 130 130 130 Alloy 145 Alloy 165 Alloy	35 35 36lad 3303 ^D 30 30 30 30 35 5050 ^F 40 110 140 150 165 5052 ^F 70 160		30 35 30 35 	20 25 20 25 	
) 132 134 136 138 :	0.63 1.20 0.25 0.63 1.20 0.45 All 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50 12.50 12.50 11.50	95 95 90 90 90 90 105 125 150 170 185 200 	130 130 Alloy Alc 130 130 130 130 Alloy 145 Alloy 165 Alloy 240	35 35 36lad 3303 ^D 30 30 30 30 5005 ^F 35 5050 ^F 40 110 140 150 165 70 160 180		30 35 30 35 	20 25 20 25 	
) 132 134 138 131 132 134 134 136	0.63 1.20 0.25 0.63 1.20 0.45 All 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50 12.50 12.50 11.50 11.50 11.50	95 95 90 90 90 90 105 125 150 170 185 200 	130 130 Alloy Alc 130 130 130 130 Alloy 145 Alloy 165 Alloy	35 35 36lad 3303 ^D 30 30 30 30 5005 ^F 35 5050 ^F 40 110 140 150 165 70 160 180 200		30 35 30 35 	20 25 20 25 	
) 132 134 136 138 132 132	0.63 1.20 0.25 0.63 1.20 0.45 All 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	1.20 1.70 0.63 1.20 1.70 12.50 12.50 12.50 12.50 12.50 12.50 12.50 11.50	95 95 90 90 90 90 105 125 150 170 185 200 	130 130 Alloy Alc 130 130 130 130 130 Alloy 145 Alloy 165 Alloy 240	35 35 36lad 3303 ^D 30 30 30 30 5005 ^F 35 5050 ^F 40 110 140 150 165 70 160 180		30 35 30 35 	20 25 20 25 	

TABLE 2 Continued

	Specified W	all Thickness ^C	Tensile	Strength, MPa		d Strength ^D offset), MPa		Elongation, ^E mi	in, %
Temper	Over	Through	Min	Max	Min	Max	Full-Section - Specimen in 50 mm	Cut-Ou	in 5 × Diameter
							30 111111		$(5.65 \sqrt{A})$
					5083 ^F				
O F	0.45 All	11.50	270 	350 	110 			14 	12
					5086 ^F				
0	0.45	11.50	240	315	95			14	12
H32	0.45	11.50	275	•••	195				
H34	0.45	11.50	300		235				
H36 F	0.45 All	11.50	325		260				
Г	All				5154 ^F	•••	•••	***	
0	0.25	11.50	205	285	75		10	10	9
H34	0.25	11.50	270		200		5	5	4
H38	0.25	11.50	310		235				
F	All				5456 ^F				
	0.45	11.50	285					14	12
O F	All	11.50	265 	365 	130 				
				Alloy	/ 6061				
0	0.45	12.50		150		95	15	15	13
T4	0.63	1.20	205	lah "St	100	ards	16	14	
	1.20	6.30 12.50	205		110	al u.s	18	16	
T42 ^H	6.30 0.63	1.20	205 205		110 95		20 16	18 14	16
172	1.20	6.30	205	//stan	95	ds itel	18	16	
	6.30	12.50	205		95		20	18	16
T6, T62 ^H	0.63	1.20	290		240	••••	10	8	
	1.20 6.30	6.30 12.50	290 290	cumen	240 240	reviev	12 14	10 12	 10
	0.00	12.50	230	Allov	/ 6063			12	10
0	0.45	12.50		A 130 V/	R210M_0)?			
T4, T42 ^H	0.63	1.20	150	ASTIVIT	70	<u>) </u>	16	14	
	and a 1.20 te	1.ai/c6.30 og/s	tan 150	ls/sist/964bcb	31-4 70 ca	ı-473e-a122	2-c12182d1	c 1 ba161stm-	b210m-02
	6.30	12.50	150		70		20	18	16
T6, T62 ^H	0.63 1.20	1.20 6.30	230 230	•••	195	***	12	8	
	6.30	12.50	230	•••	195 195		14 16	10 12	 10
T83	0.63	6.30	230		205		5		
T831	0.63	6.30	195		170		5		
T832	0.63	1.20	285	•••	250		8	5	
	1.20	6.30	275		240		8	5	
				Alloy	/ 6262				
T6, T62 ^H	0.63	1.20	290		240		10	8	
	1.20 6.30	0.63 12.50	290 290		240 240		12 14	10 12	10
Т9	0.63	10.00	330		305		5	4	3
				Alloy	7075				
	0.63	1.20		275		145	10	8	
0		12 50		275		145	12	10	9
	1.20	12.50					0	-	
O T6, T62 ^H	0.63	6.30	530		455		8	7	
						 	8 9 10	7 8 8	 7

^ASee Annex A1.

^BTo determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 MPa and each value for elongation to the nearest 0.5 % both in accordance with the rounding method of Practice E 29.

^CCoiled tube is generally available with a maximum wall thickness of 2.00 mm and only in nonheat-treatable alloys.

^DYield strength to be determined only on straight tube.

Ellongation in 50 mm apply for tube tested in full-section, for sheet-type specimens, for tubes having a flat wall, and for similar curved specimens for tubes having a curved wall, up to a maximum wall thickness of 12.50 mm. Elongations in 5D (5.65 \sqrt{A}), where D and A are diameter and cross-sectional area of the specimens, respectively, apply to round test specimens machined from wall thicknesses over 6.30 mm.

In this alloy tube other than round is produced only in the F (as drawn) and O tempers. Properties for F temper are not specified or guaranteed.

^GBeginning with the 1982 issue the requirements for the H112 tempers were replaced by the H113 temper, applicable to other than round tube, which is fabricated by cold-forming annealed round tube and acquires some temper in this forming operation.

^HMaterial in the T42 or T62 tempers is not available from the material producers.

'Material in this temper exhibits improved resistance to stress corrosion compared to that of the T6 temper. The stress corrosion resistance capability of individual lots is determined by testing the previously selected tension-test samples in accordance with the applicable electrical conductivity acceptance criteria of Table 3.

- 4.1.5 Cross-sectional dimensions (outside diameter and wall thickness, or inside diameter and wall thickness for round tube; for tube other than round, square, rectangular, hexagonal, or octagonal with sharp corners, a drawing is required)(see Tables X1.1 and X1.2),¹⁰
 - 4.1.6 Length (straight or coiled),
- 4.1.7 Nominal inside diameter of coils and mass, or maximum outside diameter, if applicable,
- 4.1.8 For alloy Alclad 3003, Alclad 3102, or Alclad 3303 state clad inside or outside (17.1),
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether heat treatment in accordance with Practice B 918 is required (11.2),
- 4.2.2 Whether flattening tests are required (Section 9 and Table 4).
- 4.2.3 Whether flare testing is required (Section 10),
- 4.2.4 Whether 7075-O material is required to develop requirements for T73 temper (12.3),
- 4.2.5 Whether testing for leaks is required and, when leaks are allowed, the number of leaks allowed and the manner of marking leaks (15.1.3.2),
- 4.2.6 Whether inside cleanness test is required on coiled tubes (16.2) and frequency of testing required,
- 4.2.7 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 20).
 - 4.2.8 Whether certification is required (Section 22), STM
- 4.2.9 Whether marking for identification is required (Section 23), and
- 4.2.10 Whether Practices B 660 applies, and if so, the levels of preservation, packaging, and packing required (Section 24).

TABLE 4 Minimum Outside Diameter Flattening Factor

Alloy	Temper -	Wall Thic	kness, mm	Minimum Diameter
Alloy	remper –	Over	Through	Flattening Factor, F
1100	0	0.32	12.50	2
	H12	0.32	12.50	3
	H14	0.32	12.50	6
	H16	0.32	12.50	8
3003	0	0.63	12.50	2
	H12	0.63	12.50	3
	H14	0.63	12.50	6
	H16	0.63	12.50	8
2024	0	0.45	1.20	3
		1.20	12.50	4
	Т3	0.45	12.50	8
5052	0	0.25	11.50	3
	H32	0.25	11.50	6
	H34	0.25	11.50	8
5086	0	0.25	11.50	3
	H32	0.25	11.50	8
6061		0.45	3.20	3
		3.20	6.30	4
		6.30	12.50	6
	T4	0.63	12.50	6
	T6	0.63	12.50	8
7075	0	0.63	1.20	4
		1.20	6.30	5
	T6	0.63	6.30	10

5.4 Manufacture 22-c12222d1c1ba/astm-b210m-02

- 5.1 The tube shall be produced by drawing an extruded tube made from hollow extrusion ingot (cast in hollow form or pierced) and extruded by the use of the die and mandrel method.
- 5.2 The ends of coiled tube shall be crimped or otherwise sealed to avoid contamination during shipment.

TABLE 3 Lot Acceptance Criteria for Resistance to Stress-Corrosion

A.I				
Alloy and Temper	Electrical Conductiv- ity, A.B % IACS	Level of Mechanical Properties	Lot Acceptance Status	
7075-T73	40.0 or greater	per specified requirements	acceptable	
	38.0 through 39.9	per specified requirements and yield strength does not exceed minimum by more than 82 MPa	acceptable	
	38.0 through 39.9	per specified requirements but yield strength exceeds minimum by more than 82 MPa	unacceptable ^C	
	less than 38.0	any level	unacceptable $^{\mathcal{C}}$	

^AThe electrical conductivity shall be determined in accordance with Practice E 1004 in the following locations:

Wall Thickness, mm Location
Up through 2.50 surface of tensile sample

Over 2.50 subsurface after removal of approximately 10 % of thick-

¹⁰ These tables are taken from American National Standard B 32.5, Preferred Metric Sizes for Tubular Metal Products Other Than Pipe.

^AFor curved surfaces, the conductivity shall be measured on a machined flat spot; however, for small size tubes, a cut-out piece may be flattened and the conductivity determined.

^BWhen material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment and precipitation heat treatment).