

Designation: F 104 – 02^{€1}

Standard Classification System for Nonmetallic Gasket Materials¹

This standard is issued under the fixed designation F 104; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

 ϵ^1 Note—Section 8.1.5, Appendix X1.3, and Tables, 2, 3, and 4 were editorially updated in November 2002.

1. Scope

- 1.1 This classification system² provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork, cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in Classification D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications. While the facing materials for laminate composite gasket materials (LCGM) are included in Classification System F 104, materials normally classified as LCGM are not covered since they are included in Classification F 868.
- 1.2 Since all of the properties that contribute to gasket performance are not included, use of the classification system as a basis for selecting materials is limited.
- 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- D 2000 Classification System for Rubber Products in Automotive Applications²
- E 11 Specification for Wire-Cloth Sieves for Testing Purposes³
- F 36 Test Method for Compressibility and Recovery of Gasket Materials²
- F 37 Test Methods for Sealability of Gasket Materials²

- F 38 Test Methods for Creep Relaxation of a Gasket Material²
- F 146 Test Methods for Fluid Resistance of Gasket Materials²
- F 147 Test Method for Flexibility of Non-Metallic Gasket Materials²
- F 148 Test Method for Binder Durability of Cork Composition Gasket Materials²
- F 152 Test Methods for Tension Testing of Nonmetallic Gasket Materials 2
- F 433 Practice for Evaluating Thermal Conductivity of Gasket Materials²
- F 607 Test Method for Adhesion of Gasket Materials to Metal Surfaces²
- F 868 Classification for Laminated Composite Gasket Materials²
- G 21 Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi⁴

3. Significance and Use

- 7 3.1 This classification is intended to encourage uniformity in reporting properties; to provide a common language for communications between suppliers and consumers; to guide engineers and designers in the test methods commonly used for commercially available materials; and to be versatile enough to cover new materials and test methods as they are introduced.
- 3.2 It is based on the principle that nonmetallic gasket materials should be described, insofar as is possible, in terms of specific physical and mechanical characteristics, and that an infinite number of such descriptions can be formulated by use of one or more standard statements based on standard tests. Therefore, users of gasket materials can, by selecting different combinations of statements, specify different combinations of properties desired in various parts. Suppliers, likewise, can report properties available in their respective products.

4. Basis of Classification

4.1 To permit "line call-out" of the descriptions mentioned in 3.2, this classification system establishes letter or number

 $^{^{1}\,\}mathrm{This}$ classification is under the jurisdiction of ASTM Committee F03 on Gaskets and is the direct responsibility of Subcommittee F03.30 on Classification. Current edition approved Oct. 10, 2002. Published December 2002. Originally issued as F 104 – 68. Last previous edition F 104 – 00.

² Annual Book of ASTM Standards, Vol 09.02.

³ Annual Book of ASTM Standards, Vol 14.02.

⁴ Annual Book of ASTM Standards, Vol 14.04.

symbols or both for various performance levels of each property or characteristic (see Table 1)⁵.

- 4.2 In specifying or describing gasket materials, each" line call-out" shall include the number of this system (minus date symbol) followed by the letter "F" and six numerals, for example: ASTM F 104 (F125400). Since each numeral of the call-out represents a characteristic (as shown in Table 1), six numerals are always required. The numeral "0" is used when the description of any characteristic is not desired. The numeral "9" is used when the description of any characteristic (or test related thereto) is specified by some supplement to this classification system, such as notes on engineering drawings.
- 4.3 To further specify or describe gasket materials, each "line call-out" may include one or more suffix letter-numeral symbols, as listed in Table 2, for example: ASTM F104 (F125400-B2M4). Various levels of definition may be established by increasing or decreasing the number of letter-numeral symbols used in the "line call-out."
- 4.4 For convenience, gasket materials are referred to by Type according to the principal fibrous or particulate reinforcement or other material from which the gasket is made and by Class according to the manufacturing method, or the common trade designation. Type numbers correspond with the first numeral, and class numbers correspond with the second numeral of the basic six-digit line call-out, as shown in Table 1.

Note 1—While this "cell-type" format provides the means for close characterization and specification of each property and combinations of properties for a broad range of materials, it is subject to possible misapplications, since impossible property combinations can be coded if the user is not familiar with available commercial materials. Table X1.1 of this classification indicates properties, characteristics, and test methods that are normally considered applicable to each type of material.

5. Physical and Mechanical Requirements

5.1 Gasket materials identified by this classification shall have the characteristics or properties indicated by the first six numerals of the line call-out, within the limits shown in Table 1, and by additional letter-numeral symbols shown in Table 2.

6. Thickness Requirements

6.1 Gasket materials identified by this classification system shall conform to the thickness tolerances specified in Table 3.

7. Sampling

- 7.1 Specimens shall be selected from finished gaskets or sheets of suitable size, whichever is the more practicable. If sheets are used, they shall, where applicable, be cut squarely with the grain of the stock, and the grain direction shall be noted by an arrow. If finished gaskets are used, the dimensions of sample and any variations from method must be reported.
- 7.2 For qualification purposes, thickness shall be 0.8 mm (0.03 in.), except for Type 2, where the qualification thickness

⁵ IRM 903 is available from R.E. Carrol, Inc. P.O. Box 5806, Trenton, NJ 08638. The user should be aware that results may differ from results using ASTM Oil No. 3. ASTM Oil No. 3 is no longer commercially available due to potential health risks associated with its use. IRM 903 has been approved by Committee D-11 as a replacement for ASTM Oil No. 3.

is to be 1.5 to 6.4 mm (0.06 to 0.25 in.), and Type 5 Class 1, where the qualification thickness is to be 0.4 mm (0.015 in.). When thicknesses other than those shown above are to be tested, the specification limits shall be agreed to in writing between the purchaser and the supplier.

7.3 Sufficient specimens shall be selected to provide a minimum of three determinations for each test specified. The average of the determinations shall be considered as the result.

8. Conditioning

- 8.1 Prior to all applicable tests, specimens shall be conditioned as follows:
- 8.1.1 When the first numeral of line call-out is "1" (Type 1 materials), specimens shall be conditioned in an oven at 100 ± 2 °C (212 ± 3.6 °F) for 1 h and allowed to cool to 21 to 30°C (70 to 85°F) in a desiccator containing anhydrous calcium chloride; *except* when second numeral of line call-out is "3" (Class 3 materials), the specimens shall be conditioned in an oven for 4 h at 100 ± 2 °C (212 ± 3.6 °F).
- 8.1.2 When the first numeral of line callout is "2" (Type 2 materials), specimens shall be conditioned at least 46 h in a controlled-humidity room or in a closed chamber with gentle mechanical circulation of the air at 21 to 30°C (70 to 85°F) and 50 to 55 % relative humidity.
- Note 2—If a mechanical means of maintaining 50 to 55 % relative humidity is not available, a tray containing a saturated solution of reagent grade magnesium nitrate, $Mg(NO_3)\cdot 6H_2O$, shall be placed in the chamber to provide the required relative humidity.
- 8.1.3 When the first numeral of line callout is "3" (Type 3 materials), specimens shall be preconditioned for 4 h at 21 to 30°C (70 to 85°F) in a closed chamber containing anhydrous calcium chloride as a desiccant. The air in the chamber shall be circulated by gentle mechanical agitation. Specimens shall then be transferred immediately to a controlled-humidity room or closed chamber with gentle mechanical circulation of the air and conditioned for at least 20 h at 21 to 30°C (70 to 85°F) and 50 to 55 % relative humidity.
- 8.1.4 When the first numeral of a line callout is "4," no conditioning of specimens is necessary.
- 8.1.5 When the first numeral of a line callout is "5," "7," or "8," test specimens shall be conditioned in accordance with 8.1.1 (Type 1 materials).
- 8.1.6 When the first numeral of a line callout is "0" or "9," specimens shall be conditioned as in 8.1.3, unless otherwise specified in supplements to this classification.
- 8.2 In all cases where testing is conducted outside the area of specified humidity, specimens shall be removed from the chamber one at a time just prior to testing.

9. Test Methods

- 9.1 Thickness:
- 9.1.1 Measure the specimens with a device actuated by a dead-weight load. The device shall be capable of reading in 0.02-mm (0.001-in.) or smaller units, and readings shall be estimated to the nearest 0.002 mm (0.0001 in.). The presser foot shall be 6.40 \pm 0.13 mm (0.252 \pm 0.005 in.) in diameter. The anvil shall have a diameter not less than that of the presser foot. The pressure on the sample shall be as specified in Table 4.

TABLE 1 Basic Physical and Mechanical Characteristics

Basic Six-Digit Numb	per	Basic Characteristic						
First Numeral	*	, or reinforcement material from which the gasket is made) shall conform to the						
	first numeral of the basic six-digit number, as followed	WS:						
	0 = not specified 1 = asbestos							
	2 = cork							
	3 = cellulose							
	4 = fluorocarbon polymer							
	5 = flexible graphite							
	7 = nonasbestos fiber, tested as Type 1							
	8 = vermiculite							
	9 = as specified ^A							
Second Numeral	•	on trade designation) shall conform to the second numeral of the basic six-digit						
	number, as follows: When first numeral is "0" or "9," second numera	al·						
	0 = not specified	ai.						
	9 = as specified ^A							
	When first numeral is "1" or "7," second numeral	al:						
	0 = not specified							
	1 = compressed sheeter process							
	2 = beater process							
	3 = paper and millboard							
	9 = as specified ^A							
	When <i>first</i> numeral is "2," second numeral: 0 = not specified							
	1 = cork composition (Class 1)							
	2 = cork and elastomeric (Class 2)							
	3 = cork and cellular rubber (Class 3)							
	9 = as specified ^A							
	When first numeral is "3," second numeral:							
	0 = not specified							
	1 = untreated fiber—tag, chipboard, vulcanize	d fiber, etc. (Class 1)						
	2 = protein treated (Class 2)							
	3 = elastomeric treated (Class 3)							
	4 = thermosetting resin treated (Class 4) 9 = as specified ^A							
	When <i>first</i> numeral is "4," second numeral:							
	1 = sheet PTFE							
	2 = PTFE of expanded structure							
	3 = PTFE filaments, braided, or woven							
	4 = PTFE felts							
	9 = as specified	2b75-9caf-49cc-a7c5-589b00ba4d1a/astm-f104-02e1						
	When mist numeral is 5 or 6, second numeral	AII:						
	0 = not specified 1 = homogeneous sheet							
	2 = laminated sheet							
	9 = as specified ^A							
Third Numeral	·	ordance with Test Method F 36, shall conform to the percent indicated by the third						
	numeral of the basic six-digit number. (Example: 4	= 15 to 25 %)						
	0 = not specified	5 = 20 to 30 %						
	1 = 0 to 10 %	6 = 25 to 40 %						
	2 = 5 to 15 %*	7 = 30 to 50 %						
	3 = 10 to 20 %	8 = 40 to 60 %						
	4 = 15 to 25 % * 7 to 17 % for compressed sheeter process	9 = as specified ^A						
Fourth Numeral		il.5 determined in accordance with Test Method F 146, shall conform to the percer						
r ourar riumorai	indicated by the fourth numeral of the basic six-dig	·						
	0 = not specified	5 = 20 to 40 %						
	1 = 0 to 15 %	6 = 30 to 50 %						
	2 = 5 to 20 %	7 = 40 to 60 %						
	3 = 10 to 25 %	8 = 50 to 70 %						
	4 = 15 to 30 %	9 = as specified ^A						
Fifth Numeral		determined in accordance with Test Method F 146, shall conform to the percent						
	indicated by the fifth numeral of the basic six-digit							
	0 = not specified	5 = 40 %, max						
	1 = 10 %, max	6 = 60 %, max						
	2 = 15 %, max 3 = 20 %, max	7 = 80 %, max 8 = 100 %, max						
	3 = 20 %, max 4 = 30 %, max	9 = as specified ^A						
Sixth Numeral		ned in accordance with Test Method F 146, shall conform to the percent indicated						
	by the sixth numeral of the basic six-digit number.							
	0 = not specified	5 = 40 %, max						
	1 = 10 %, max	6 = 60 %, max						
	2 = 15 %, max	7 = 80 %, max						
	2 = 15 %, max 3 = 20 %, max 4 = 30 %, max	7 = 50 %, max 8 = 100 %, max 9 = as specified ^A						

^A On engineering drawings or other supplement to this classification system.

TABLE 2 Supplementary Physical and Mechanical Characteristics

	TABLE 2	Supplementary Physical and N	lechanical Characteristics	S						
Suffix Symbol	Supplement	ary Characteristics								
A9 B1 through B9	Sealability characteristics shall be determined in accordance with Test Method F 37. External load, internal pressure, other details of test, and results shall be as specified on engineering drawing or other supplement to this classification. Creep relaxation characteristics shall be determined in accordance with Test Method F 38. Loss of stress at end of 24 h shall not exceed the									
	amount indicated by the numeral of the B-symbol. B1 = 10 % B5 = 30 %									
	B2 = 15 %	B6 = 40 %	B5 = 30 % B6 = 40 %							
	B3 = 20 %	B7 = 50 %								
	B4 = 25 %	B8 = 60 %								
		B9 = as specified ^A								
D00 through D99	The former ASTM standard F 64, Test Method for Corrosive and Adhesive Effects of Gasket Materials on Metal Surfaces, was discontinued in 1980. The newly established test for adhesion has become Test Method F 607. Weight and thickness change after immersion in ASTM Fuel B shall be determined in accordance with Test Method F 146.									
E00 through E99	8									
	•	ed the standard rating number indicate tandard rating number indicated by the	•	vo-digit number of the E-symbol. <i>Thickness</i>						
	Weight Increase, %	Thickness Increase, %	c second numeral of the L syn	1501.						
	(first numeral) (second numeral)									
	E0_ = not specified	E_0 = not specified								
	E1_ = 10	E_1 = 0-5								
	E2_ = 15	$E_2 = 0-10$								
	E3_ = 20	$E_3 = 0-15$								
	E4_ = 30	$E_4 = 5-20$								
	E5_ = 40	E_5 = 10-25								
	E6_ = 60	E_6 = 15–35								
	E7_ = 80 E8_ = 100	E_7 = 25-45 E_8 = 30-60								
	E9_ = as specified ^A	E 9 = as specified ^A								
Н	_ •		Method F 607 Results shall b	e as specified on engineering drawing or						
	other supplement to this classifi		eu.eu i ee i i teeune en an e	o ao oposinou en engineering araning er						
K1 through K9			ccordance with Practice F 433 u	using a temperature of 100 ± 2°C (212 ±						
· ·	3.6°F). The k-factor obtained in	W/(m·K) (Btu·in./h·ft2·°F) shall fall wit	hin the ranges indicated by the	numeral of a K symbol.						
	K1 = 0. to 0.09 (0 to 0.65)	K5 = 0.29 to 0.38 (2.00 to 2.65)								
	K2 = 0.07 to 0.17 (0.50 to	K6 = 0.36 to 0.45 (2.50 to 3.15)								
	1.15)	4.4 /./								
	K3 = 0.14 to 0.24 (1.00 to	K7 = 0.43 to 0.53 (3.00 to 3.65)								
	1.65)									
	K4 = 0.22 to 0.31 (1.50 to 2.15)	K8 = 0.50 to 0.60 (3.50 to 4.15)								
	2.10)	K9 = as specified ^A								
L0000 through L9999	constituent indicated by the sec	erials. First fiber constituent indicated cond numeral of the four-digit number	of the L-symbol. Binder constitu	-digit number of the L-symbol. Second fiber uent indicated by the third numeral of the						
		ol. Insert type indicated by the fourth	1/1 0/2 - 1	•						
	First Fiber	Second Fiber	Heird numeral)	Insert Type						
	(first numeral) L0 = not specified Catalo	(second numeral)	(third numeral) L0 = not specified	(fourth numeral) L0 = not specified 104-02e1						
	L1 = Aramid	L1 = Aramid	L1 = NBR	L1 = Carbon Steel						
	L2 = Glass	L2 = Glass	L2 = SBR	L2 = SS 304						
	L3 = Carbon	L3 = Carbon	L3 = CR	L3 = SS 316						
	L4 = Graphite	L4 = Graphite	L4 = EPDM	L4 = Nonmetallic						
	L5 = Mineral/Inorganic	L5 = Mineral/Inorganic	L5 = IR	L5 = none						
	L6 = Cellulose	L6 = Cellulose	L6 = CSM	L9 = as specified ^A						
	L9 = as specified ^A	L7 = none	L9 = as specified ^A							
		L9 = as specified ^A								
M1 through M9	Tensile strength characteristics shall be determined in accordance with Test Method F 152 and 9.2. Results in MPa (psi) shall be no less than the value indicated by the numeral of the M-symbol.									
	M1 = 0.689 (100)	M5 = 10.342 (1500)								
	M2 = 1.724 (250)	M6 = 13.790 (2000)								
	M3 = 3.447 (500)	M7 = 20.684 (3000)								
	M4 = 6.895 (1000)	M8 = 27.579 (4000)								
		M9 = as specified ^A								
R	-	shall be determined in accordance w	rith Test Method F 148. There s	hall be no evidence of disintegration at						
	conclusion of test.									
S9		when immersed in ASTM No. 1 Oil, I								
т		146. Results shall be as specified on								
Т	,	e determined in accordance with Test	iviethod F 147. There shall be	no evidence of cracks, breaks, or separation						
W	at conclusion of test. Mildew Resistance shall be dete	ermined for visual effects only as dos	cribed in Sections 0.3 and 0.3 d	of Practice G 21. The only fungus shall be						
A A										
	Chaetomium globosum, see Section 6.4.1 of Practice G 21. The test unit from which specimens were taken shall be considered defective if or or more of the specimens tested has a rating higher than 0. Specimens taken from gaskets and strips shall be 2 in. long and the approximate									
	width of the material undergoing		J	0 1111111111111111111111111111111111111						
Z		s specified on engineering drawing or	other supplement to this classi	fication.						
	and the second s	,								

^A On engineering drawing or other supplement to this classification.

9.1.2 Take the reading by lowering the presser foot gently until it is in contact with the specimen. Take a sufficient

number of readings, depending on the size of the specimen, to provide a reliable average value.

TABLE 3 Thickness Tolerances

Type and Class of Material (First Two Numerals of Basic Six-Digit Number)	Thickness Specified, mm (in.)	Applicable Tolerance, ^A mm (in.)
11, 12, 71 and 72	0.41 (0.016) and under	+0.13 (+0.005) -0.05 (-0.002)
	over 0.41 (0.016) and under 1.57 (0.062) 1.57 (0.062) and over	±0.13(±0.005) ±0.20(±0.008)
13	up to 3.18 (0.125) 3.18 (0.125) to 12.70 (0.500)	±0.13 (±0.005) ±0.25 (±0.010)
21	all thicknesses	± 10 %, or $\pm 0.25~(\pm 0.010)$ whichever is the greater
22	under 1.57 (0.062) 1.57 (0.062) and over	±0.25 (±0.010) ±0.38 (±0.015)
23	1.57 (0.062) and over	±0.38 (±0.015)
31, 32, and 33 (also 00 and 99) ^B	0.41 (0.016) and under over 0.41 (0.016) to 1.57 (0.062) over 1.57 (0.062) to 2.39 (0.094) over 2.39 (0.094)	±0.089 (±0.0035) ±0.13 (±0.005) ±0.20 (±0.008) ±0.41 (±0.016)
51 and 81	1.6 (0.062) and under	±0.051 (±0.002)
52 and 82	12.7 (0.5) and under	±10 %

^A Tolerances listed are permissible variations applicable to a given lot of sheets or gaskets. Where other thickness tolerances are necessary due to the gasket application, tolerances applicable to individual sheet or gasket may be agreed to in writing between the purchaser and the supplier.

TABLE 4 Thickness Measurement Stresses and Forces

Type of Material of First Numeral of Six-Digit Number	Pressure on Sample, kPa (psi)	Total Force on Pressor Foot, N (oz) (reference)				
1 and 7	80.3 ± 6.9 (11.5 ± 1.0)	2.50 (9.0)				
2	$35 \pm 6.9 (5.1 \pm 1.0)$	1.11 (4.0)				
3	$55 \pm 6.9 \ (8.0 \pm 1.0)$	1.75 (6.3)				
0 and 9 ^A	$55 \pm 6.9 \ (8.0 \pm 1.0)$	1.75 (6.3)				
5 and 8 https://standa	80.3 ± 6.9 (11.5 ± 1.0)	2.50 (9.0)				

^A Unless otherwise specified on engineering drawing or other supplement to this classification.

9.2 Other Types of Materials (as indicated by 0 or 9 first numeral of basic six-digit number)—Use the same apparatus and general procedure outlined for Type 3 materials, unless otherwise specified in the engineering drawing or other supplement to this classification.

10. Keywords

10.1 classification; description; gasket; line call-out; nonmetallic gasket; physical and mechanical properties; specification; testing

APPENDIX

(Nonmandatory Information)

X1. APPLICABLE TEST METHODS

X1.1 Table X1.1 indicates properties, characteristics, and test methods that are normally considered applicable to each type of material. It is not intended to limit the use of numeral-symbols as provided in Classification System F 104 where experience indicates that the related properties, characteristics, or test methods, or all, are applicable.

X1.2 Table X1.2 is being provided to offer an explanation

of the system of identification of gasket materials previously used in Specifications D 1170 which has been superseded by Classification System F 104.

X1.3 Tables X1.3-X1.5 are also retained in this Appendix to provide a reference for converting formerly used P-identification numbers into the present Classification System F 104. These conversions are shown in Tables X1.6-X1.8.

^B Unless otherwise specified on engineering drawing or other supplement to this classification.

NOTICE: This standard has either been superceded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

TABLE X1.1 Typical Types of Materials

Note 1—"X" indicates that the test conditions shown in first column have been used to characterize the type of material named in column heading." Dash" (—) indicates that the test method is either "not applicable" to the material named or has not been commonly used in characterizing the material.

Properties, Characteristics, and	Type 1, Asbestos or Other Inorganic Fibers		Type 2, Cork		Type 3, Cellulose or Other Organic Fibers			Type 5, Flexible Graphite			
Test Methods	Com- pressed Asbestos	Beater Addition Asbestos	Asbestos Paper and Millboard	Cork Composi- tion		Cork and Cellular Rubber	Un- treated Fiber	Treated Protein	Treated Elasto- meric	Homoge- neous Sheet	Lami- nated Sheet
Compressibility:											
5000-psi load (Test Method F 36, Procedure A)	X	X	_	_	_	_	_	_	_	X	X
100-psi load (Test Method F 36, Procedure F)	_	_	_	X	_	Χ	_	_	_	_	_
1000-psi load (Test Method F 36, Procedure H)	_	_	X	_	_	_	_	_	_	_	_
(Test Method F 36, Procedure G)	_	_	_	_	_	_	X	Χ	Χ	_	_
400-psi load (Test Method F 36, Procedure B)	_	_	_	_	Χ	_	_	_	_	_	_
Tensile strength	X	X	X	Χ	Χ	Χ	X	Χ	Χ	X	Χ
Resistance to exposure in ASTM No. 3 Oil:5											
Volume change, 70 h at 212°F	_	_	_	_	Χ	Χ	_	_	_	_	_
Weight increase, 22 h at 70 to 85°F	_	_	_	_	_	_	X	X	X	_	_
Thickness increase: 22 h at 70 to 85°F	_	_	_	_	_	_	X	X	X	_	_
5 h at 300°F	X	X	_	_	_	_	_	_	_	_	_
Resistance to exposure in ASTM Fuel B:											
Weight increase: 22 h at 70 to 85°F	_	_	_	_	_	_	X	X	Χ	_	_
5 h at 70 to 85°F	X	X	_	_	_	_	_	_	_	_	_
Thickness change: 22 h at 70 to 85°F	_	_	_	_	_	_	X	X	X	_	_
5 h at 70 to 85°F	X	X	_	_	_	_	_	_	_	_	_
Resistance to exposure in ASTM No. 1 Oil:											
Volume change, 70 h at 212°F	_	_	_	_	X	Χ	X	_	_	_	_
Resistance to exposure in ASTM Fuel A:											
Volume change, 22 h at 70 to 85°F	_	_	_	_	X	Χ	X	_	_	_	_
Resistance to exposure in distilled water:											
Weight increase, 22 h at 70 to 85°F			h-0	ton	1-1		X	X	X	_	_
Thickness change, 22 h at 70 to 85°F	_				UZII	(ULS)	X	X	X	_	_
Sealability	X	X	X	X	Χ	Χ	X	X	X	X	X
Creep relaxation	X	X			-]	2 ± - '		• \ —	_	X	X
Adhesion	X	X	X	\sqrt{x}	$T\overline{x}S$		1 X	X	X	Χ	X
Binder Durability			~	Х				_/_	_	_	_
Flexibility		_	_	Χ	X	X	_	_	_	Χ	X
Thermal Conductivity	X	X	X	X	X	X	X	X	X	Χ	X
Mildew Resistance				X	110	1 10 1		_	_	_	_

ASTM F104-02e1

https://standards.iteh.ai/catalog/standards/sist/0d112b75-9caf-49cc-a7c5-589b00ba4d1a/astm-f104-02e1