

Edition 1.0 2016-10

TECHNICAL SPECIFICATION

Nanomanufacturing - Key control characteristics - VIEW Part 4-2: Nano-enabled electrical energy storage – Physical characterization of cathode nanomaterials, density measurement

> IEC TS 62607-4-2:2016 https://standards.iteh.ai/catalog/standards/sist/7fcb9468-054a-44fb-848d-5540239bb28e/iec-ts-62607-4-2-2016

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2016 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

details all new publications released. Available online and 60/1f you with to give us your feedback on this publication or also once a month by emailtips://standards.itch.ai/catalog/standardsedtfuttherassistance.please contact the Customer Service 5540239bb28e/iec-ts-Centre: csc@jep.ch.

Edition 1.0 2016-10

TECHNICAL SPECIFICATION

Nanomanufacturing - Key control characteristics EVIEW Part 4-2: Nano-enabled electrical energy storage - Physical characterization of cathode nanomaterials, density measurement

IEC TS 62607-4-2:2016 https://standards.iteh.ai/catalog/standards/sist/7fcb9468-054a-44fb-848d-5540239bb28e/iec-ts-62607-4-2-2016

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 07.120

ISBN 978-2-8322-3697-0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	4	
INTRODUCTION	6	
1 Scope	7	
2 Normative references	7	
3 Terms, definitions, and abbreviated terms	7	
3.1 Terms and definitions	7	
3.2 Abbreviated terms	8	
4 Sample preparation methods	8	
4.1 Sieving	8	
4.2 Drying	8	
5 Test methods	8	
5.1 Compacted density	8	
5.1.1 General	8	
5.1.2 Apparatus	9	
5.1.3 Measurement steps		
5.1.4 Data analysis / interpretation of results		
5.1.5 Precision of the method 5.2 Rolling density en STANDARD PREVIEW	.10	
5.2 Rolling density EII STANDARD FREVIEW	. 10	
5.2.1 General (standards.iteh.ai)	. 10	
5.2.2 Apparatus	.11	
5.2.3 Measurement steps <u>IFC TS 62607-4-2:2016</u>		
5.2.4 Data analysis //interpretation.of/results76b9468-054a-44fb-848d		
5.2.5 Repeatability of the method c/iec-ts-62607-4-2-2016		
6 Uncertainty		
Annex A (informative) Case study		
A.1 Sample preparation	. 13	
A.1.1 Schematic figures of die for measuring compacted density and rolling density	. 13	
A.1.2 Compacted density measurement results for LFP nanomaterial		
A.2 Rolling density sample preparation case study	.17	
A.2.1 Procedures of rolling density sample preparation	.17	
A.2.2 Rolling density measurement results for LFP nanomaterial	.18	
Bibliography	. 20	
Figure 1 – Appearance of die for compacted density measurement	.10	
Figure 2 – Appearance of die with compressor	.10	
Figure A.1 – Three-dimensional schematic of die for compacted density measurement	.13	
Figure A.2 – Engineering schematic of die for compacted density measurement	.14	
Figure A.3 – Schematic of rolling machine for rolling density measurement		
Figure A.4 – Results consistency of sample A in Table A.1		
Figure A.5 – Results consistency of sample A in Table A.2		
Figure A.6 – Procedures of rolling density sample preparation		
Figure A.7 – Results consistency of sample C in Table A.3	.19	

IEC TS 62607-4-2:2016 © IEC 2016 - 3 -

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TS 62607-4-2:2016</u> https://standards.iteh.ai/catalog/standards/sist/7fcb9468-054a-44fb-848d-5540239bb28e/iec-ts-62607-4-2-2016

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 4-2: Nano-enabled electrical energy storage – Physical characterization of cathode nanomaterials, density measurement

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 5540239bb28e/iec-ts-62607-4-2-2016
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62607-4-2, which is a Technical Specification, has been prepared by IEC technical committee 113: Nanotechnology for electrotechnical products and systems.

The text of this Technical Specification is based on the following documents:

Enquiry draft	Report on voting
113/289/DTS	113/328/RVC

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62607 series, published under the general title *Nanomanufacturing – Key control characteristics*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International Standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended. **iTeh STANDARD PREVIEW**

A bilingual version of this publication may be issued at a later date.

IEC TS 62607-4-2:2016

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Compared with normal bulk materials, nanomaterials often exhibit many unique properties, such as mechanical, thermal, magnetic, optical and electrochemical properties. Decreasing particle size of the cathode materials, e.g. lithium iron phosphate (LFP), down to nanoscale greatly enhances their electrochemical performance. For example, smaller particle size will shorten the diffusion length of lithium ion during lithium intercalation/de-intercalation process. Higher surface area will increase the electrode/electrolyte contact area, and subsequently improve the high current charge/discharge rates. Furthermore, the particle surfaces may introduce a sub-gap, which can smooth the electrode discharge curve, then help to prolong the cycling life of the electrode.

Density is one of the key control characteristics for cathode nanomaterials and affects the performance of electronic energy storage devices significantly. At an appropriate density, the performance. such as low-temperature and electrochemical high-temperature charge/discharge, and the ratio of charge/discharge capability, will be dramatically increased.

Among different densities, changing the compacted density of cathode nanomaterials to a suitable value can increase their charge capacity, decrease the internal resistance, lower the polarization effect, increase cycling life of electrical energy storage devices, and improve the usability of electrical energy storage devices. It is important to find the optimum compacted density for the electronic energy storage device design. If the compacted density is too large or too small, the intercalation and de-intercalation of ions will be affected. In general, compacted density is in a positive correlation to the device's specific capacity, and is considered as one of the key parameters for material energy density.

Rolling density affects the electrochemical performance characteristics of cathode nanomaterials in a similar way. Rolling density indicates the ratio of the mass of coating slurry compound to its volume. Rolling density is a valuable quantity not only for evaluating the volumetric energy density, but also for selecting a cathode nanomaterial candidate for Hybrid-Electric Vehicles (also known as HEVs) and Electric Vehicles (also known as EVs).

Both of these two types of properties need to be considered in the density assessment of a nano-enabled electrical energy storage device. Comparable results will be used to judge the consistence of cathode nanomaterials, which relates to performance and safety issues. Therefore, a standardized density measurement procedure for cathode nanomaterials becomes indispensable to its users for comparing the values of nanomaterials from different suppliers.

This standardized method is intended for use in comparing the characteristics of cathode nanomaterials in the study stage, not for evaluating the electrode in end-products. The method is applicable to materials exhibiting function or performance only possible with nanotechnology, intentionally added to the active materials to measurably and significantly change the characteristics of electrical energy storage devices.

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 4-2: Nano-enabled electrical energy storage – Physical characterization of cathode nanomaterials, density measurement

1 Scope

This part of IEC 62607, which is a Technical Specification, provides a standardized method for the determination of the density of cathode nanomaterials in powder form used for electrical energy storage devices. This method provides users with a key control characteristic to decide whether or not a cathode nanomaterial is usable, or suitable for their application.

This document includes

- definitions of terminology used in this document,
- recommendations for sample preparation,
- outlines of the experimental procedures used to measure cathode nanomaterial properties,
- methods of interpretation of results and discussion of data analysis,
- case studies, and (standards.iteh.ai)
- references.

<u>IEC TS 62607-4-2:2016</u>

2 Normative references rds.iteh.ai/catalog/standards/sist/7fcb9468-054a-44fb-848d-5540239bb28e/iec-ts-62607-4-2-2016

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/TS 80004-1, Nanotechnologies – Vocabulary – Part 1: Core terms

3 Terms, definitions, and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/TS 80004-1 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

cathode nanomaterial

material used as a cathode in a nano-enabled energy storage device which contains a fraction of nanomaterial and exhibits function or performance made possible only with the application of nanotechnology

Note 1 to entry: The cathode is a multilayered foil consisting of (1) an aluminium current collector, (2) an optional adhesion promoting carbon layer (to enhance cathode layer adhesion if necessary) and (3) the cathode layer. This cathode layer consists of the active phase (e.g. lithium containing mixed oxides or phosphate, such as LFP), a conducting phase (carbon black) and an organic binder (PVDF).

3.1.2

compacted density

ratio of the mass of powder to the volume it occupies after it has been subjected to compression under a certain pressure

3.1.3

rolling density

ratio of the mass of the rolled active material to its volume after being coated on a substrate

3.1.4

die

tool designed for containing and forming the powdered samples during compression, which is made from hard materials (e.g. tungsten carbide)

Note 1 to entry: A die is usually in a cylinder shape and contains two punches for producing compacts, and is of the floating type or of the type suspended from a spring, in order to ensure dual action pressure.

3.1.5

press

3.2

mechanical device designed for generating and applying pressure upon the die to compress the sample, which is capable of applying sufficient force to the die surface with an accuracy of $\pm 1~\%$

Abbreviated terms (standards.iteh.ai)

LFP lithium iron phosphate, LiFePO

PVDF polyvinylidenepfluorideds.iteh.ai/catalog/standards/sist/7fcb9468-054a-44fb-848d-5540239bb28e/iec-ts-62607-4-2-2016

4 Sample preparation methods

4.1 Sieving

Sample should be homogeneous particulate powder with uniform sizes. If big chunks or large agglomerates exist, they should be removed by sieving (150 mesh) in order to avoid cracking, delamination and local ununiformity in the compacted density.

4.2 Drying

Dry the sample in an oven at a temperature above 100 °C until dry. For example, one drying protocol may consist of two hours in an oven at 105 °C. However, other samples may require longer time to be sufficiently dry for use in nano-enabled electrical energy storage devices.

5 Test methods

5.1 Compacted density

5.1.1 General

Weigh the desired mass of sample, place the sample in the die (The parameters and tolerances are indicated in Figure A.1 and engineering drawing is shown in Figure A.2 in Annex A.), and then put the die in the middle of the power compressor. Adjust the settings on the powder compressor until the desired pressure is reached. Maintain the pressure for a certain duration, then take out the cylindrical sample and measure its height. The compacted density is calculated by dividing the mass of cathode nanomaterials by the volume.

5.1.2 Apparatus

5.1.2.1 Analytical balance

The analytical balance used shall have a resolution of 0,01 g.

5.1.2.2 Powder compressor

The powder compressor consists of two parts:

- a) a die, having the three-dimensional appearance shown in Figure A.1 and Figure A.2;
- b) a die compressor, having the appearance shown in Figure 2.

5.1.2.3 Vernier caliper

The resolution of an appropriate vernier caliper used should be 0,02 mm.

5.1.3 Measurement steps

Measurement steps are as follows:

- a) Turn on the electronic balance, weigh a certain mass of sample (suggested range: 1 g to 10 g and record the mass (*m*) in grams. Care should be taken to ensure that the change of *m* during sample transfer and density measurement is minimal.
- b) Take out the die from the powder compressor and clean it with dustless paper, transfer the weighed sample into the die (if it cannot be filled all at once, do it as many times as necessary), make sure the powder is evenly distributed in the die, then cap the die (Figure 1).
- c) Gently place the die in the middle of the compressor and fix the hand wheel clockwise. Increase the pressure to the desired setting (the value can vary depending on the type of powder, such as particle size, shape. For LFP, it is suggested to be 10 MPa to 20 MPa, which is defined by the integrity of the sample cylinder). Maintain the pressure for 1 min to 2 min, and then release the pressure slowly.
- d) Take out the die (Figure 2) and then take out the sample the sample should be a cylinder; measure the height (*h*) and diameter (*d*) using the vernier caliper and record *h* and *d* in millimetres.

In case of nanomaterials with which it is difficult to form intact cylinders, it is recommended to measure the sample height when it is still with the upper and lower pads, and then obtain the value by subtracting the predetermined pad heights.

5.1.4 Data analysis / interpretation of results

Compacted density is calculated by Formula (1):

$$\rho = \frac{m}{v} = \frac{4m}{\pi d^2 h \times 10^{-3}}$$
(1)

where

- ρ is the compacted density, g/cm³;
- *m* is the mass of the powder, g;
- v is the volume of powder after compression, cm³;
- π is the ratio of the circumference of a circle to the diameter;
- d is the diameter of sample cylinder, mm;
- *h* is the height of sample after compaction, mm.