INTERNATIONAL **STANDARD**

ISO 11437-2

> First edition 1994-12-01

Nickel alloys — Determination of trace-element content by electrothermal atomic absorption spectrometric

iTeh STANDARD PREVIEW

(**Part 2**ards.iteh.ai) Determination of lead content

ISO 11437-2:1994

https://standards.iteh.ai/catalog/standards/sist/6e328292-8862-481d-

b885-8bf335752363/iso-11437-2-1994 Alliages de nickel — Dosage des éléments-traces — Méthode par spectrométrie d'absorption atomique à excitation électrothermique —

Partie 2: Dosage du plomb

Reference number ISO 11437-2:1994(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting VIEW a vote.

International Standard ISO 11437-2 was prepared by Technical Committee ISO/TC 155, Nickel and nickel alloys, Subcommittee SC 4, Analysis of nickel alloys. ISO 11437-2:1994

https://standards.iteh.ai/catalog/standards/sist/6e328292-8862-481d-ISO 11437 consists of the following parts, bunder, the general title Nickeb94 alloys — Determination of trace-element content by electrothermal atomic absorption spectrometric method:

- Part 1: General requirements and sample dissolution
- Part 2: Determination of lead content
- Part 3: Determination of bismuth content
- Part 4: Determination of silver content

Printed in Switzerland

[©] ISO 1994

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Nickel alloys — Determination of trace-element content by electrothermal atomic absorption spectrometric method —

Part 2: Determination of lead content

1 Scope

3 Principle

This part of ISO 11437 specifies an electrothermal KU Dissolution of a test portion in a mixture of acids. atomic absorption spectrometric method for the de-Addition of a modifier to an aliquot of the test soltermination of lead in the range of 0,5 g/tonne to S.1 ution di 10,0 g/tonne in nickel alloys.

ISO 11437-2:19 Jransfer of a small volume of the test solution to a graphite furnace electrothermal atomizer. The general requirements concerning the apparatus ndards/ sampling, dissolution of the test sample, stomic abr3/iso-1 7_2_199 Measurement of the absorbance of the resonance sorption measurements, calculation and test report line energy from the spectrum of lead and comparison are given in ISO 11437-1.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 11437. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 11437 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 5725:1986. Precision of test methods - Determination of repeatability and reproducibility for a standard test method by inter-laboratory tests.

ISO 11437-1:1994, Nickel alloys - Determination of trace-element content by electrothermal atomic absorption spectrometric method — Part 1: General reguirements and sample dissolution.

with that of calibration solutions at a wavelength of 283.3 nm.

4 Reagents

In addition to the reagents listed in ISO 11437-1, the following special reagents are required.

4.1 Pure nickel metal, containing less than 1 g/tonne of lead.

4.2 Nickel, stock solution (50 g/l).

Weigh, to the nearest 0,1 g, 25,0 g of the pure nickel (4.1). Transfer to a 600 ml tall-form beaker and add 100 ml of water. Cautiously add 100 ml of nitric acid $(\rho_{20} = 1.41 \text{ g/ml})$ in small portions, in such a manner that the dissolution remains under control. Cool the solution and transfer it to a 500 ml one-mark volumetric flask. Make up to the mark with water and mix.

NOTE 1 If large nickel turnings or chunks are used, gentle heating may be required to complete the dissolution. When using carbonyl nickel powder, the solution should be filtered to remove undissolved carbon.

4.3 Nickel, solution (5,0 g/l).

Transfer 10,0 ml of the nickel stock solution (4.2) to a 100 ml one-mark volumetric flask. Make up to the mark with water and mix.

4.4 Modifier, nickel nitrate-ammonium phosphate solution.

Weigh, to the nearest 0,1 g, 6,0 g of ammonium dihydrogen orthophosphate ($NH_4H_2PO_4$) and dissolve it in 50 ml of water. Transfer the solution to a 100 ml one-mark volumetric flask. Add 20,0 ml of the nickel stock solution (4.2), make up to the mark with water and mix.

This solution shall be freshly prepared.

4.6 Lead, standard solution (1,0 mg/l).

This solution shall be freshly prepared.

5.1 Preparation of solutions required for testing criteria

Follow the instructions given for the preparation of lead calibration solutions in 7.3 and 7.4.1.1. The composition of these calibration solutions is given in table 1.

Table 1 — Lead concentration of calibration solutions

Calibration	Concentration of Pb					
solution	μg/litre	g/tonne	ng/ml			
S1	0	0	0			
S2	10	2	10,0			
S3	20	4	20,0			
S4	30	6	30,0			

Teh STANDA^{5,2} D^{Instrument} criteria

4.5 Lead, standard reference solution (100 mg/l).

1 litre one-mark volumetric flask. Make up to the mark with water and mix. Store in a polyethylene bottle.

Pipette 10,0 ml of the lead standard reference sol-

ution (4.5) into a 1 litre one-mark volumetric flask. Add 20 ml of nitric acid ($\rho_{20} = 1,41$ g/ml). Make up to the

Weigh, to the nearest 0,001 g, 0,100 g of lead metal

of 99,9 % (*m/m*) minimum purity and transfer to a The characteristic mass determined in annex A (A.7.1) 250 ml beaker. Add a mixture of 20 ml of nitric acid $s_{0.1437-150}^{14}$ 1437-1:1994, shall be within 20 % of that ($\rho_{20} = 1,41$ g/ml) and 20 ml of water and heat to as given in the manufacturer's literature. sist dissolution. Cool the solution and transfer it to a

5.2.2 Minimum precision

The minimum precision of calibration solution S4 shall not exceed 10 % of the mean absorbance of the same solution, and the minimum precision of calibration solution S2 shall not exceed 4 % of the mean absorbance of solution S4 when determined as described in annex A (A.7.2) of ISO 11437-1:1994.

5.2.3 Limit of detection

The limit of detection of lead, determined as described in annex A (A.7.3) of ISO 11437-1:1994, shall be less than 20 pg (equivalent to 1,0 μ g/l or 0,2 g/tonne).

5.2.4 Linearity

The linearity of the calibration, determined as described in annex A (A.7.4) of ISO 11437-1:1994, shall not be less than 0,7.

6 Sampling and sample preparation

Refer to clause 6 of ISO 11437-1:1994.

5 Apparatus

mark with water and mix.

The apparatus required is specified in clause 5 of ISO 11437-1:1994.

The atomic absorption spectrometer and electrothermal atomizer are satisfactory if, after optimization according to annex A (A.2 to A.6) of ISO 11437-1:1994, they meet the criteria specified in 5.2.

7 Procedure

7.1 Preparation of the test solution

Proceed as directed in 7.1 of ISO 11437-1:1994. Transfer the solution to a 100 ml one-mark volumetric flask. Dilute to the mark and mix.

7.2 Reagent blank test

Carry out a blank test in parallel with the determination, following the same procedure and using the same quantities of all the reagents.

7.3 Lead calibration solutions

Using the 25 ml burette, transfer 10,0 ml of the nickel stock solution (4.2) to each of six 100 ml one-mark volumetric flasks. Using the 10 ml burette, add 0 ml; 1,0 ml; 2,0 ml; 3,0 ml; 4,0 ml and 6,0 ml of the lead standard solution (4.6). Make up to the mark with water and mix.

NOTES

2 If the electrothermal atomizer is fitted with an autosampler, the addition of modifier, dilution and mixing can be done in the autosampler cups.

3 Mixing can be done by repeated charging and discharging of the contents of the plastics vial using the largest micropipette.

7.4.2 Electrothermal atomic absorption measurements

Proceed as directed in 7.4.1 of ISO 11437-1:1994 using

- a pyrolytic graphite tube fitted with a L'vov platform;
- peak area integration absorbance measurement at a wavelength of 283,3 nm;
- an injection volume of 20 µl.

7.4.3 Preparation of calibration graphs

These calibration solutions contain 0 μg; 10,0 μg; Proceed as directed in 7.4.2 of ISO 11437-1:1994. 20,0 μg; 30,0 μg; 40,0 μg and 60,0 μg of lead per litre **1.1 Number of determinations**

7.4 Calibration and determination ISO 11437-2:19@arry out the determination at least in duplicate.

https://standards.iteh.ai/catalog/standards/sist/6e328292-8862-481d-The procedures described in 7.4.1 shall be carried out 3/iso-11837 Expression of results immediately prior to the measurement.

7.4.1 Dilutions and addition of the nickel-phosphate modifier

7.4.1.1 Lead contents of up to 5,0 g/tonne in the test sample

Transfer 1,0 ml of each test solution containing up to 25 μ g Pb/l and of each calibration solution containing up to 30 μ g Pb/l to 5 ml plastics vials using a micropipette. Add 100 μ l of the modifier solution (4.4) using a micropipette and mix.

7.4.1.2 Lead contents of 5,0 g/tonne to 10,0 g/tonne in the test sample

Transfer 0,50 ml of each test solution containing between 25 μ g and 50 μ g of lead per litre, and of calibration solutions containing 0 μ g; 20,0 μ g; 40,0 μ g; and 60,0 μ g of lead per litre, to 5 ml plastics vials using a micropipette. Add 0,50 ml of the nickel solution (4.3) and 100 μ l of the modifier solution (4.4) using micropipettes and mix.

8.1 Calculation

Proceed as directed in 8.1 of ISO 11437-1:1994. Use a dilution factor, *F*, of 1 in the calculation in 8.1.6 of ISO 11437-1.

8.2 Precision

8.2.1 Laboratory tests

Nine laboratories in four countries participated in the testing of this procedure using six samples of nominal composition given in table 2.

8.2.2 Statistical analysis

The results were treated according to ISO 5725 as described in 8.2.2 of ISO 11437-1:1994. The results of this analysis are given in table 3.

9 Test report

Refer to clause 9 of ISO 11437-1:1994.

Sample	Pb	Со	Cr	Мо	Та	Ti	AI	Hf	w	Ni
1	0,000 1	15	15	5		2,5	2,5	_		Remainder
2	0,001	15	15	5		2,5	2,5			Remainder
3	< 0,000 1	10	8		2,5	1,5	5	1,5	10	Remainder
4	0,000 4	10	8		2,5	1,5	5	1,5	10	Remainder
5	0,001	10	8		2,5	1,5	5	1,5	10	Remainder
6	< 0,000 05	14	10	3		4,5	6	1(∨)	Remainder

Table 2 — Nominal composition of test samples [% (m/m)]

Sample reference	Mean	Repeat- ability	Reproduc- ibility
	g/tonne		
1	1,6	0,26	0,45
iT ² eh	STAIND	ARD P	RE2N3IEV
3	0,14	0,33	0,42
4	(stąnda	rd§,jteh	1.a1 0,86
5	10,7	1,42	2,06
https://standa	0,04 Ids.iteh.ai/catalog	1437-2:1994 0.27 /standards/sist/66	0, 26 328292-8862-48

 Table 3 — Results of statistical analysis

b885-8bf335752363/iso-11437-2-1994

iTeh STANDARD PREVIEW This page intentionally left blank

<u>ISO 11437-2:1994</u> https://standards.iteh.ai/catalog/standards/sist/6e328292-8862-481db885-8bf335752363/iso-11437-2-1994

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11437-2:1994</u> https://standards.iteh.ai/catalog/standards/sist/6e328292-8862-481db885-8bf335752363/iso-11437-2-1994

ICS 77.120.40

Descriptors: nickel alloys, chemical analysis, determination of content, trace elements, lead, atomic absorption spectrometric method.

Price based on 4 pages