INTERNATIONAL

Aerospace - Rivets, solid, 100° normal countersunk head, in metallic material, with or without surface treatment - Dimensions

Aéronautique et espace - Rivets ordinaires, à tête fraisée 100° normale, en matériau métallique, avec ou sans traitement de surface - Dimensions

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12281:1999
https://standards.iteh.ai/catalog/standards/sist/b462d634-2b51-4a3d-
bd39-833dfc50cca4/iso-12281-1999

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 12281 was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee SC 4, Aerospace fastener systems.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12281:1999
https://standards.iteh.ai/catalog/standards/sist/b462d634-2b51-4a3d-bd39-833dfc50cca4/iso-12281-1999

[^0]
Aerospace - Rivets, solid, 100° normal countersunk head, in metallic material, with or without surface treatment - Dimensions

1 Scope

This International Standard specifies the dimensions of solid rivets, 100° normal countersunk head, in metallic material, with or without surface treatment.

This International Standard is only applicable for the compilation of aerospace product standards.
iTeh STANDARD PREVIEW

2 Normative reference (standards.iteh.ai)

The following normative document contains provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this thternational Standard are encouraged to investigate the possibility of applying the 3 mostrecent edition of the normative document indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 286-2:1988, ISO system of limits and fits - Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts.

3 Configuration and dimensions

See Figure 1 and Table 1. Dimensions and tolerances are expressed in millimetres. They apply after any surface coating(s).

a The length range is limited (see Tables 2 and 3).
b Blended convex form permissible within limiting dimensions2281:1999
c Drill start optional, shape optional, only for corrosion-resistant steels, níkerafroys, titanium alloys
d Area of this datum shall be included between \mathcal{L}_{5} and $L_{5}+1$.
e Chamfer or convex radius, at manufacturer's choice
Figure 1

Table 1 - Dimensions (except length L_{1})

Diameter code	$\begin{aligned} & D_{1} \mathrm{a} \\ & \mathrm{~d} 11 \mathrm{~b} \end{aligned}$	$D_{2}{ }^{\text {c }}$	$\begin{gathered} D_{3} \\ \mathrm{~min} . \end{gathered}$	D_{4}		D_{5} min.	L_{2}	$\begin{gathered} L_{3} \\ \mathrm{~min} . \end{gathered}$	$\begin{gathered} L_{4} \\ 0 \\ -0,08 \end{gathered}$	L_{5}	$\begin{array}{r} L \\ \max . \end{array}$	min.	$\begin{gathered} R \\ \pm 0,08 \end{gathered}$
016	1,6	3	2,7	2,25	-	-	0,59	0,03	0,31	2	-	-	0,15
020	2	3,7	3,3	2,89	-	-	0,72	0,04	0,34	2,2	-	-	
025	2,5	4,65	4,15	3,86	2	1,7	0,91	0,05	0,33	2,4	0,8	0,5	
030	3	5,55	4,95	4,5	2,4	2,1	1,07	0,06	0,44	2,5	0,9	0,6	
035	3,5	6,5	5,8	5,14	2,8	2,45	1,26	0,07	0,57	2,8	1,05	0,7	0,25
040	4	7,4	6,6	5,78	3,2	2,8	1,43	0,08	0,68	3	1,2	0,8	
050	5	9,25	8,25	7,71	4	3,5	1,8	0,1	0,65	3,8	1,5	1	
060	6	11,1	9,9	9	4,8	4,2	2,15		0,88	4,1	1,8	1,2	
080	8	14,8	13,6	12,21	6,4	5,6	2,87		1,09	4,8	2,4	1,6	
100	10	18,5	17,3	15,43	8	7	3,59		1,29	5,5	3	2	

[^1]Table 2 - Length L_{1} for rivets in aluminium and aluminium alloys

Diameter code		016	020						35		40	05							
Length		Shape of tail end ${ }^{\text {a }}$																	
	$\begin{gathered} L_{1} \\ +0,5 \\ 0 \end{gathered}$	A	A	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
003	3	X	X																
004	4	X	X	X	X	X	X	X	X										
005	5	X	X	X	X	X	X	X	X										
006	6	X	X	X	X	X	X	X	X	X	X								
007	7	X	X	X	X	X	X	X	X	X	X								
008	8	X	X	X	X	X	X	X	X	X	X	X	X						
009	9	X	X	X	X	X	X	X	X	X	X	X	X						
010	10	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
011	11	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
012	12	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
013	13	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
014	14	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
015	15	X	X	X	X	X	X	X	X	x	X	X	X	X	X	X	X	X	X
016	16	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
017	17		X	X		x	1x	12	Q x^{1}	- 8	1.X	X	X	X	X	X	X	X	X
018	18		X	X		X	X	X	X	X	X	X	X	X	X	X	X	X	X
019	19		X	X		X	IS	${ }^{2}$	x	X	X	X	X	X	X	X	X	X	X
020	20		X	X		${ }^{3} \mathrm{x}$ -	33 dff	50 Cc	4 So-	22	$1{ }^{1}$	X	X	X	X	X	X	X	X
022	22		X	X		X		X		X	X	X	X	X	X	X	X	X	X
024	24		X	X		X		X		X	X	X	X	X	X	X	X	X	X
026	26			X		X		X		X		X	X	X	X	X	X	X	X
028	28			X		X		X		X		X	X	X	X	X	X	X	X
030	30			X		X		X		X		X		X	X	X	X	X	X
032	32			X		X		X		X		X		X	X	X	X	X	X
035	35			X		X		X		X		X		X		X	X	X	X
040	40					X		X		X		X		X		X		X	
045	45							X		X		X		X		X		X	
050	50									X		X		X		X		X	
055	55											X		X		X		X	
060	60											X		X		X		X	

a Form A : non-radiused tail end (see Figure 1)
Form B : radiused tail end (see Figure 1)

Table 3 - Lengths L_{1} for rivets in nickel alloys, corrosion-resistant steels, commercially pure titanium and titanium alloys

Diameter code		016	020	02	25	03		03		04					
Length		Shape of tail end ${ }^{\text {a }}$													
	$\begin{gathered} L_{1} \\ +0,5 \\ 0 \end{gathered}$	A	A	A	B	A					B	A	B	A	B
003	3	X	X												
004	4	X	X	X	X	X	X	X	X						
005	5	X	X	X	X	X	X	X	X						
006	6	X	X	X	X	X	X	X	X	X	X				
007	7	X	X	X	X	X	X	X	X	X	X				
008	8	X	X	X	X	X	X	X	X	X	X	X	X		
009	9	X	X	X	X	X	X	X	X	X	X	X	X		
010	10	X	X	X	X	X	X	X	X	X	X	X	X	X	X
011	11	X	X	X	X	X	X	X	X	X	X	X	X	X	X
012	12	X	X	X	X	X	X	X	X	X	X	X	X	X	X
013	13	X	X	X	X	X	X	X	X	X	X	X	X	X	X
014	14	X	X	X	X	X	X	X	X	X	X	X	X	X	X
015	15	IX	ex	P x	- x	x-	X	x	x	x	x	x	X	X	X
016	16	X	X	(x^{1}	2x	dx	- x	x	X	X	X	X	X	X	X
017	17		X	X		X	X	X	X	X	X	X	X	X	X
018	18		X	X		ISX	2X1	1X9	X	X	X	X	X	X	X
019	19	https:/	standa	dxte	2ai/ca	x ${ }^{\text {g }}$	tanda	$\mathrm{x}^{\text {sis }}$	x^{6}	x^{4}	${ }^{2} \times 1$	${ }^{-4} x^{3}$	X	X	X
020	20			X		X		X	X	X	X	X	X	X	X
022	22					X		X		X	X	X	X	X	X
024	24					X		X		X	X	X	X	X	X
026	26							X		X		X	X	X	X
028	28							X		X		X	X	X	X
030	30									X		X		X	X
032	32									X		X		X	X
035	35											X		X	
040	40											X		X	

a Form A: non-radiused tail end (see Figure 1)
Form B : radiused tail end (see Figure 1)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12281:1999
https://standards.iteh.ai/catalog/standards/sist/b462d634-2b51-4a3d-bd39-833dfc50cca4/iso-12281-1999

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12281:1999
https://standards.iteh.ai/catalog/standards/sist/b462d634-2b51-4a3d-
bd39-833dfc50cca4/iso-12281-1999

[^0]: © ISO 1999
 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case postale 56 • CH-1211 Genève 20 • Switzerland
 Internet iso@iso.ch
 Printed in Switzerland

[^1]: a Over length $\left(L_{5}-L_{2}\right), D_{1}$ max. may increase by 0,03 .
 b In accordance with ISO 286-2
 C Maximum condition

