INTERNATIONAL STANDARD

First edition 1997-12-15

Diesel fuel — Assessment of lubricity using the high-frequency reciprocating rig (HFRR) —

Part 1: Test method

iTeh STANDARD PREVIEW Carburant diesel — Évaluation du pouvoir lubrifiant au banc alternatif à haute fréquence s.iteh.ai)

Partie 1: Méthode d'essai ISO 12156-1:1997 https://standards.iteh.ai/catalog/standards/sist/5c37f2f3-8297-477b-b84ae39e15b4ab3d/iso-12156-1-1997

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 12156-1 was prepared jointly by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 7, *Injection equipment and filters for use on road vehicles* and ISO/TC 28, *Petroleum products and lubricants*.

ISO 12156 consists of the following parts, under the general title *Diesel fuel* — Assessment of lubricity using the high-frequency reciprocating rig (HFRR):

- Part 1: Test method

- Part 2: Limits

iTeh STANDARD PREVIEW

Annex A of this part of ISO 12156 is for information only.

ISO 12156-1:1997 https://standards.iteh.ai/catalog/standards/sist/5c37f2f3-8297-477b-b84ae39e15b4ab3d/iso-12156-1-1997

© ISO 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch

X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

Introduction

All diesel fuel injection equipment has some reliance on diesel fuel as a lubricant. Wear due to excessive friction resulting in shortened life of engine components, such as diesel fuel injection pumps and injectors, has sometimes been ascribed to lack of lubricity in the fuel.

The relationship of test results to diesel injection equipment component distress due to wear has been demonstrated for some fuel/hardware combinations where boundary lubrication is a factor in the operation of the component.

Test results from fuels tested to this procedure have been found to correlate to many fuel/hardware combinations and provide an adequate prediction of the lubricating quality of the fuel.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12156-1:1997</u> https://standards.iteh.ai/catalog/standards/sist/5c37f2f3-8297-477b-b84ae39e15b4ab3d/iso-12156-1-1997

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12156-1:1997</u> https://standards.iteh.ai/catalog/standards/sist/5c37f2f3-8297-477b-b84ae39e15b4ab3d/iso-12156-1-1997

Diesel fuel — Assessment of lubricity using the high-frequency reciprocating rig (HFRR) —

Part 1: Test Method

WARNING — Application of this part of ISO 12156 may involve the use of hazardous materials, operations, and equipment. This part of ISO 12156 does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this part of ISO 12156 to establish appropriate safety and health practices and determine the applicable regulatory limitations prior to use.

1 Scope

This part of ISO 12156 specifies a test method using the high-frequency reciprocating rig (HFRR), for assessing the lubricating property of diesel fuels including those fuels which may contain a lubricity-enhancing additive.

It applies to fuels used in dieselengines TANDARD PREVIEW

NOTE — It is not known if this test method will predict the performance of all additive/fuel combinations. Additional work is underway to further establish this correlation and future revisions of this part of ISO 12156 may be necessary once this work is complete.

ISO 12156-1:1997 https://standards.iteh.ai/catalog/standards/sist/5c37f2f3-8297-477b-b84ae39e15b4ab3d/iso-12156-1-1997

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 12156. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4259:1992, Petroleum products — Determination and application of precision data in relation to methods of test.

ISO 5272:1979, Toluene for industrial use — Specifications.

ISO 6507-1:—¹⁾, Metallic materials — Vickers hardness test — Part 1: Test method.

ISO 6508:1986, Metallic materials — Hardness test — Rockwell test (scales A - B - C - D - E - F - G - H - K).

ISO/IEC Guide 25:1990, General requirements for the competence of calibration and testing laboratories.

ISO Guide 35:1989, Certification of reference materials — General and statistical principles.

ASTM D-329:1995, Specification for acetone.

AISI E-52100, Chromium alloy steel.

ANSI B3.12, Metal balls.

¹⁾ To be published. (Revision of ISO 6507-1:1982, ISO 6507-2:1983, ISO 6507-3:1989, ISO 409-1:1982, ISO 409-2:1983 and ISO/DIS 409-3)

3 Definitions

For purposes of this part of ISO 12156, the following definitions apply.

3.1 Iubricity: A property of the fluid, measured by the wear scar produced on an oscillating ball from contact with a stationary plate immersed in the fluid and operating under closely controlled conditions.

3.2 MWSD: Measured mean diameter of the wear scar produced on the test ball.

3.3 WS1,4: Calculated value of wear scar diameter corrected to the standardized water vapour pressure of 1,4 kPa.

4 Principle

A sample of the fluid under test is placed in a test reservoir which is maintained at the specified test temperature. A fixed steel ball is held in a vertically mounted chuck and forced against a horizontally mounted stationary steel plate with an applied load. The test ball is oscillated at a fixed frequency and stroke length while the interface with the plate is fully immersed in the fluid reservoir. The metallurgies of the ball and plate, temperature, load, frequency, and stroke length are specified. The ambient conditions during the test are used to correct the size of the wear scar generated on the test ball to a standard set of ambient conditions. The corrected wear scar diameter is a measure of the fluid lubricity.

5 Reagents and materials Feh STANDARD PREVIEW

5.1 Compressed air, used for drying the equipment, supplied at a pressure of 140 kPa to 210 kPa and containing less than 0,1 ml/m³ hydrocarbons and less than 50 ml/m³ water.

Warning — Use with extreme caution in the presence of combustible material.

5.2 Toluene, in accordance with ISO 5272. e39e15b4ab3d/iso-12156-1-1997

Warning — Flammable. Harmful if inhaled.

5.3 Acetone, in accordance with ASTM D-329.

Warning — Extremely flammable. Vapours may cause flash fire.

5.4 Reference fluids

Warning — Flammable.

Two reference fluids shall be used for verifying the performance of the test apparatus. The fluids shall have significantly different lubricity performance, as measured by this International Standard. The fluids shall have certified HFRR values and humidity corrction factors (HCF) from a supplier accredited to ISO/IEC Guide 25 and prepared in accordance with ISO Guide 35. They shall be clearly marked with the HFRR value (WS1,4) and its expanded uncertainty, expressed in micrometres, and with the HCF expressed in micrometres per kilopascal. The two reference fluids shall have a minimum difference in HFRR value of 200 μ m, as measured by this part of ISO 12156.

NOTE — ISOPAR M, which is manufactured by the Exxon Chemical Company and used as CEC Reference Fuel RF-74-T-95, has been found to be satisfactory for the basis of a low-lubricity reference fluid.

The fuel qualified for use in the Caterpillar 1H or 1G single-cylinder tests, fuel conforming to ISO 4113:1988, *Road vehicles* — *Calibration fluid for diesel injection equipment*, or CEC Reference Fuel RF-90-A-92 have all been found to be satisfactory for the basis of a high-lubricity reference fluid.

This information is given for the convenience of users of this part of ISO 12156 and does not constitute an endorsement by ISO of the products named. Equivalent products may be used if they can be shown to lead to the same results.

6 Apparatus

6.1 Test apparatus

The test apparatus²⁾ (see figure 1) shall be capable of engaging a steel ball loaded against a stationary steel plate with an applied load and oscillating at a fixed frequency and stroke length while the contact interface is fully immersed in a fluid reservoir according to the test conditions given in table 1.

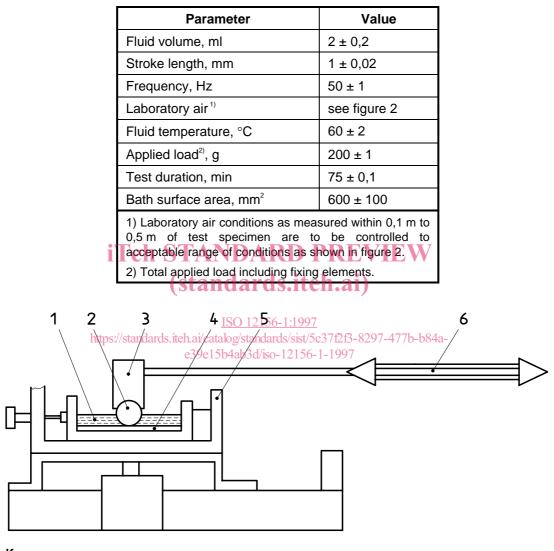


Table 1 — Test conditions

Key

- 1 Fuel bath (reservoir)
- 2 Test ball
- 3 Applied load
- 4 Test plate
- 5 Heating bath
- 6 Oscillating motion

Figure 1 — Example of the high-frequency reciprocating rig

²⁾ HFRR units, HFR2, supplied by PCS Instruments, 5 Warple Mews, Warple Way, London W3 0RF, England, have been found satisfactory. This information is given for the convenience of users of this part of ISO 12156 and does not constitute an endorsement by ISO. Equivalent products may be used if they can be shown to lead to the same results.

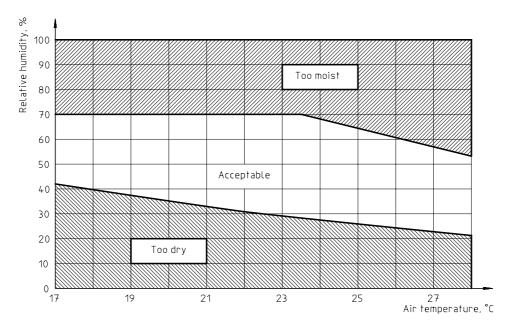


Figure 2 — Laboratory air conditions

The specimen bath shall be capable of holding a specimen plate in a rigid manner and will also contain the test fuel. The temperature of this bath, and consequently the test fuel contained in it, should be achieved by means of an electrically controlled heater pad to which the specimen bath is closely attached.

The apparatus control unit for controlling variable parameters shall include provision for electronic data storage and retrieval.

6.2 Test plate of AISI E-52100 steel machined from annealed rod, having a Vickers hardness "HV 30" scale number of 190 to 210 (according to 1SO 6507-1). It shall be lapped and polished to a surface finish of *Ra* < 0,02 μm. e39e15b4ab3d/iso-12156-1-1997

6.3 Test ball, 6 mm in diameter, grade 28 according to ANSI B3.12 of AISI E-52100 steel. It shall have a Rockwell hardness "C" scale (HRC) number of 58 to 66 (according to ISO 6508) and a surface finish of *Ra* < 0,05 µm.

6.4 Microscope or similar imaging device, capable of \times 100 magnification and capable of measuring to within 1 µm.

6.5 Desiccator containing a drying agent, capable of storing test plates, balls, and hardware.

6.6 Cleaning bath, ultrasonic type, with a seamless stainless steel tank of adequate capacity and a cleaning power of 40 W or greater.

6.7 Fuel containers of epoxy lined steel, unless it can be shown that alternative materials give equivalent results.

6.8 Time measuring device, mechanical or electronic, capable of measuring (75 ± 0,1) min.

6.9 Test mass of 200 g, including any attaching apparatus for fixing to the vibrator arm.

7 Preparation and calibration

7.1 Preparation of apparatus

7.1.1 Test plates and balls - as received

Using clean forceps, place a number of plates (shiny side up) and balls as received into a clean glass wide-necked jar, and cover with toluene. Leave to soak for a minimum of 12 h, then place the jar in the ultrasonic cleaning bath for 10 min. Transfer the plates (shiny side up) and balls into a jar of fresh toluene.

7.1.2 Hardware

Place the sample holders, screws, and all hardware and utensils that come into contact with the test fluid, together with a plate and ball cleaned according to 7.1.1, in a clean glass beaker and cover with toluene. Place the beaker in the ultrasonic cleaning bath for 10 min, then using clean forceps transfer the hardware and test specimens into a beaker of acetone. Place in the ultrasonic bath for 2 min. Remove the components, and, if not to be used immediately, store in the desiccator.

7.2 Calibration and correction

7.2.1 Temperature

The temperature control of the specimen bath (6.1) shall be checked using a calibrated temperature measuring device.

7.2.2 Frequency

The frequency of the vibrator unit shall be checked with a calibrated frequency meter.

7.2.3 Stroke length

The stroke length shall be checked by measuring the full length of the wear scar on the test plate, using a calibrated microscope, after running a test on the low-lubricity reference fluid. The mean width of the wear scar is subtracted from the length of the wear scar to give the actual stroke length.

7.2.4 Run time

iTeh STANDARD PREVIEW

The run time should be checked with a calibrated timer (6.8). (standards.iteh.ai)

7.2.5 Test rig performance

The instrument performance shall be checked by running a single test (as described in clauses 7, 8 and 9) on each of the two reference fluids. The certified value of HCF for that reference fluid shall be used in calculating the value of WS1,4.

If WS1,4 is outside the certified range for that reference fluid, two more tests shall be carried out. If either of these tests gives a result which is out of range, the instrumentation and stroke length verification (7.2.1 to 7.2.4) must be performed. If the result for the low-lubricity fluid is too low it may need to be replaced.

Referencing tests shall be conducted using each reference fluid after every 25 tests or every 10 test days, whichever is shorter.

NOTE — During the testing to develop this test method, the MWSD (10.1) for the low-lubricity reference fluid was observed to change during storage. It may need to be replaced regularly and should not be used if older than six months.

8 Test procedure

8.1 The greatest care shall be taken to adhere strictly to cleanliness requirements and to the specified cleaning procedures. During handling and installation procedures, protect cleaned test parts (plates, balls, reservoir, and fixtures) from contamination by using clean forceps and ensure that the specimens do not become scratched.

8.2 Using forceps, place the test plate into the specimen bath, shiny side up. Secure the test plate to the bath and the bath to the test rig. Ensure that the thermocouple is properly placed in the reservoir.

8.3 Using forceps, place the test ball into the holder and attach the holder to the end of the vibrator arm. Ensure the holder is horizontal before fully securing the unit.

8.4 Measure the average temperature and relative humidity within 0,1 m to 0,5 m of the specimen bath. If the average values do not conform to the requirements of figure 2, steps must be taken to change the humidity before the test can proceed. Record the average values of temperature and relative humidity.