
Reference number
ISO/IEC 13211-2:2000(E)

© ISO/IEC 2000

INTERNATIONAL
STANDARD

ISO/IEC
13211-2

First edition
2000-06-01

Information technology — Programming
languages — Prolog —

Part 2:
Modules

Technologies de l'information — Langages de programmation — Prolog —

Partie 2: Modules
iTeh STANDARD PREVIEW

(standards.iteh.ai)
ISO/IEC 13211-2:2000

https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-
f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:200(E)PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2000 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:2000(E)

Contents PageForeword. v

Introduction . vi

1 Scope

: 1
1.1 Notes . 1

2 Normative reference : 1

3 Terms and definitions : 1

4 Compliance: 3
4.1 Prolog processor . 3
4.2

ISO/IEC 13211-2:2000(E)6.6.1

ISO/IEC 13211-2:2000(E)

vISO/IEC 2000 – All rights reserved©Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized
system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International
Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and
IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard
requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 13211 may be the subject of patent rights. ISO and IEC
shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 13211-2 was prepared by Joint Technical Committee ISO/IEC JTC 1,Information technology,
Subcommittee SC 22,Programming languages, their environments and system software interfaces.

ISO/IEC 13211 consists of the following parts, under the general titleInformation technology — Programming languages — Prolog:

� Part 1: General core

� Part 2: Modules

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:2000(E)

Introduction
This is the first International Standard for Prolog, Part 2 (Modules). It was produced on May 1, 2000.

Prolog (Programming in Logic) combines the concepts of logical and algorithmic programming, and is recognized
not just as an important tool in AI (Artificial Intelligence) and expert systems, but as a general purpose high-level
programming language with some unique properties.

The language originates from work in the early 1970s by Robert A. Kowalski while at Edinburgh University (and ever
since at Imperial College, London) and Alain Colmerauer at the University of Aix-Marseilles in France. Their efforts
led in 1972 to the use of formal logic as the basis for a programming language. Kowalski’s research provided the
theoretical framework, while Colmerauer’s gave rise to the programming language Prolog. Colmerauer and his team then
built the first interpreter, and David Warren at the AI Department, University of Edinburgh, produced the first compiler.

The crucial features of Prolog are unification and backtracking. Unification shows how two arbitrary structures can be
made equal, and Prolog processors employ a search strategy which tries to find a solution to a problem by backtracking
to other paths if any one particular search comes to a dead end.

Prolog is good for windowing and multimedia because of the ease of building complex data structures dynamically, and
also because the concept of backing out of an operation is built into the language. Prolog is also good for interactive
web applications because the language lends itself to both the production and analysis of text, allowing for production
of HTML ‘on the fly’.

This International Standard defines syntax and semantics of modules in ISO Prolog. There is no other International
Standard for Prolog modules.

Modules in Prolog serve to partition the name space and support encapsulation for the purposes of constructing large
systems out of smaller components. The module system is procedure-based rather than atom-based. This means that
each procedure is to be defined in a given name space. The requirements for Prolog modules are rendered more
complex by the existence of context sensitive procedures.

vi ISO/IEC 2000 – All rights reserved©

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

INTERNATIONAL STANDARD ISO/IEC 13211-2:2000(E)

Information technology — Programming languages —
Prolog — Part 2: Modules

1 Scope

This part of ISO/IEC 13211 is designed to promote the
applicability and portability of Prolog modules that contain
Prolog text complying with the requirements of the Programming
Language Prolog as specified in this part of ISO/IEC 13211.

This part of ISO/IEC 13211 specifies:

a) The representation of Prolog text that constitutes a Prolog
module,

b) The constraints that shall be satisfied to prepare Prolog
modules for execution, and

c) The requirements, restrictions and limits imposed on a
conforming Prolog processor that processes modules.

This part of ISO/IEC 13211 does not specify:

a) The size or number of Prolog modules that will exceed the
capacity of any specific data processing system or language
processor, or the actions to be taken when the limit is
exceeded,

b) The methods of activating the Prolog processor or the
set of commands used to control the environment in which
Prolog modules are prepared for execution,

c) The mechanisms by which Prolog modules are loaded,

d) The relationship between Prolog modules and the
processor-specific file system.

1.1 Notes

Notes in this part of ISO/IEC 13211 have no effect on the
language, Prolog text, module text or Prolog processors that are
defined as conforming to this part of ISO/IEC 13211. Reasons
for including a note include:

a) Cross references to other clauses and subclauses of this
part of ISO/IEC 13211 in order to help readers find their
way around,

b) Warnings when a built-in predicate as defined in this part
of ISO/IEC 13211 has a different meaning in some existing
implementations.

2 Normative reference

ISO/IEC 13211-1 : 1995,Information technology — Program-
ming languages – Prolog Part 1: General core.

3 Terms and definitions

The terminology for this part of ISO/IEC 13211 has a format
modeled on that of ISO 2382.

An entry consists of a phrase (inbold type) being defined,
followed by its definition. Words and phrases defined in the
glossary are printed initalics when they are defined in ISO/IEC
13211-1 or other entries of this part of ISO/IEC 13211. When
a definition contains two words or phrases defined in separate
entries directly following each other (or separated only by a
punctuation sign), * (an asterisk) separates them.

Words and phrases not defined in the glossary are assumed to
have the meaning given in ISO 2382-15 and ISO/IEC 13211-1;
if they do not appear in ISO 2382-15 or ISO/IEC 13211-1, then
they are assumed to have their usual meaning.

A double asterisk (**) is used to denote those definitions where
there is a change from the meaning given in ISO/IEC 13211-1.

3.1 accessible procedure:See 3.39 –procedure, accessible.

3.2 activation, of a procedure: A procedure has been
activatedwhen it is called for execution.

3.3 argument, qualified: A qualified term which is an
argument in a module name qualified * predication.

3.4 calling context: The set ofvisible procedures, theoperator
table, thecharacter conversion mappingand Prolog flag values
denoted by amodule name, and used as a context foractivation
of a context sensitive procedure.

3.5 database, visible: The visible databaseof a module M
is the set ofproceduresthat can beactivated without module
name qualificationfrom within M.

3.6 defining module: See 3.23 –module, defining.

3.7 export: To make a procedure of an exporting module
available for import or re-export by other modules.

3.8 exported procedure: See 3.41 –procedure, exported.

1ISO/IEC 2000 – All rights reserved©

The following normative document contains provision which,
through reference in this text, constitute provisions of this part of
ISO/IEC 13211. For dated references, subsequent amendments to,
or revisions of, any of these publications do not apply. However,
parties to agreements based on this part of ISO/IEC 13211 are
encouraged to investigate the possibility of applying the most

recent edition of the normative document indicated below. For
undated references, the latest edition of the normative document
referred to applies. Members of ISO and IEC maintain registers of
currently valid International Standards.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:2000(E)3.9

import: To make procedures * exportedor re-exported
by a module * visiblein an importing or re-exporting module.

3.10 import, selective: The importation into a moduleof only
certain explicitly indicatedprocedures * exportedor re-exported
by a module (see 6.2.5.2).

3.11 load (a module): Load the module interfaceof a module
and correctly prepare all itsbodies, if any, for execution.

NOTE — The interface of a module shall be loaded before any body
of the module (see 6.2.3).

3.12 load (a module interface): Correctly prepare themodule
interface of the module for execution.

3.13 lookup module: See 3.29 –module, lookup.

3.14 meta-argument: An argument in ametaprocedurewhich
is context sensitive.

3.15 metapredicate: A predicatedenoting ametaprocedure.

3.16 metapredicate directive: A directive stipulating that a
procedure is a metapredicate.

3.17 metapredicate mode indicator: Either a predicate indi-
cator or a compound term each of whose arguments is‘:’ , or
‘*’ (see 6.1.1.4).

3.18 metaprocedure: A procedurewhose actions depend on
the calling context, and which therefore carries augmented
module information designating thiscalling context.

3.19 metavariable: A variable occurring as anargument
in a metaprocedurewhich will be subject to module name
qualification when theprocedure is activated.

3.20 module: A named collection ofproceduresanddirectives
together with provisions toexport some of theproceduresand
to import and re-export * proceduresfrom other modules.

3.21 module body: A Prolog text containing the definitions
of the proceduresof a module together with import and other
directives local to thatmodule body.

3.22 module, calling (of a procedure): The module in which
a correspondingactivator is executed.

3.23 module, defining: The module in whose module body
(or bodies)a procedure is defined explicitly and entirely.

3.24 module directive: A term D which affects the meaning
of module text(6.2.4), and is denoted in thatmodule textby a
directive-term:- (D). .

3.25 module, existing: A module whose interface has been
prepared for execution(see 6.2.3).

3.26 module, exporting: A module that makes available
proceduresfor import or re-export by other modules.

3.27 module interface: A sequence of read-terms which
specify theexportedand re-exported procedures andexported *
metapredicatesof a module.

3.28 module, importing: A module into which procedures
are imported, adding them to thevisible databaseof the module.

3.29 module, lookup: The module where search forclauses
of a procedure takes place.

NOTE — The lookup module defines the visible database of procedures
accessible without module name qualification (see 6.1.1.3).

3.30 module name: An atom identifying a module.

3.31 module name qualification: The qualification of a term
with a module name.

3.32 module, qualifying: See 6.1.1.3 –Qualifying mod-
ule, lookup module and defining module .

3.33 module, re-exporting: A module which, by re-
exportation,* imports certain procedures and exports these
sameprocedures.

3.34 module text: A sequence ofread-termsdenotingdirec-
tives, module directivesand clauses.

3.35 module, user: A module with name user containing
all user-defined proceduresthat are not specified as belonging
to a specificmodule.

3.36 predicate **: An identifier or qualified identifiertogether
with an arity.

3.37 predicate name, qualified: The qualified identifierof a
predicate.

3.38 preparation for execution: Implementation dependent
handling of bothProlog text and module textby a processor
which results, if successful, in the processor being ready to
execute the preparedProlog text or module text.

3.39 procedure, accessible:A procedure is accessibleif it
can be activated with module name qualificationfrom any
modulewhich is currentlyloaded.

2 ISO/IEC 2000 – All rights reserved©

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:2000(E)3.40

procedure, context sensitive: A procedure is context
sensitive if the effect of its execution depends on thecalling
context in which it is activated.

3.41 procedure, exported: A procedurethat is made available
by a module for import or re-export by other modules.

3.42 procedure, visible (in a module M): A procedure
that can be activated fromM without using module name
qualification.

3.43 process **: Execution activity of a processor running
prepared Prolog textand module textto manipulateconforming
Prolog data, accomplishside effectsand compute results.

3.44 prototype: A compound termwhere eachargument is
a variable.

3.45 prototype, qualified: A qualified term whose first
argumentis a module nameand secondargumentis a prototype.

3.46 qualification: The textual replacement (6.4.3) of aterm
T by the term M:T where M is a module name.

3.47 qualified argument: See 3.3 –argument, qualified

3.48 qualified term: See 3.51 –term, qualified.

3.49 re-export: To makeprocedures * exportedby a module
* visible in the re-exporting module, while at the same time
making them available forimport or re-exportby other modules
from the re-exporting module.

3.50 re-export, selective: The re-exportationby a re-exporting
* moduleof certain indicatedprocedures * exportedfrom another
module (see 6.2.4.3).

3.51 term, qualified: A term whose principal functor is
(:)/2 .

3.52 visible procedure (in amoduleM): See 3.42 –procedure,
visible.

3.53 visible database (of amoduleM): See 3.5 – database,
visible.

4 Compliance

4.1 Prolog processor

A conforming processor shall:

a) Correctly prepare for execution Prolog text and module
text which conforms to:

1) the requirements of this part of ISO/IEC 13211,
including the requirements set out in ISO/IEC 13211-1
General Core, whether or not the text makes explicit use
of modules, and

2) the implementation defined and implementation specific
features of the Prolog processor,

b) Correctly execute Prolog goals which have been prepared
for execution and which conform to:

1) the requirements of this part of ISO/IEC 13211 and
ISO/IEC 13211, and

2) the implementation defined and implementation specific
features of the Prolog processor,

c) Reject any Prolog text, module text or read-term whose
syntax fails to conform to:

1) the requirements of this part of ISO/IEC 13211 and
ISO/IEC 13211, and

2) the implementation defined and implementation specific
features of the Prolog processor,

d) Specify all permitted variations from this part of ISO/IEC
13211 and ISO/IEC 13211 in the manner prescribed by this
part of ISO/IEC 13211 and ISO/IEC 13211, and

e) Offer a strictly conforming mode which shall reject the
use of an implementation specific feature in Prolog text,
module text or while executing a goal.

4.2 Module text

Conforming module text shall use only the constructs specified
in this part of ISO/IEC 13211 and ISO/IEC 13211-1, and
the implementation defined and implementation specific features
supported by the processor.

Strictly conforming module text shall use only the constructs
specified in this part of ISO/IEC 13211 and ISO/IEC 13211-1,
and the implementation defined features specified by this part
of ISO/IEC 13211.

4.3 Prolog goal

A conforming Prolog goal is one whose execution is defined
by the constructs specified in this part of ISO/IEC 13211
and ISO/IEC 13211-1, and the implementation defined and
implementation specific features supported by the processor.

A strictly conforming Prolog goal is one whose execution is
defined by constructs specified in this part of ISO/IEC 13211
and ISO/IEC 13211-1, and the implementation defined features
specified by this part of ISO/IEC 13211.

4.4 Prolog modules

4.4.1 Prolog text without modules

A processor supporting modules shall be able to prepare and
execute Prolog text that does not explicitly use modules. Such

3ISO/IEC 2000 – All rights reserved©

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:2000(E)text shall be prepared and executed as the body of the required
built-in module nameduser.

4.4.2 The module user

A Prolog processor shall support a built-in moduleuser .
User-defined procedures not defined in any particular module
shall belong to the moduleuser .

4.5 Documentation

A conforming Prolog processor shall be accompanied by docu-
mentation that completes the definition of every implementation
defined implementation specific features (if any) specified in
this part of ISO/IEC 13211and ISO/IEC 13211-1.

4.5.1 Dynamic Modules

A Prolog processor may support additional implementation
specific procedures that support the creation or abolition of
modules during execution of a Prolog goal.

4.5.2 Inaccessible Procedures

A Prolog processor may support additional features whose effect
is to make certain procedures defined in the body of a module
not accessible from outside the module.

5 Syntax

This clause defines the abstract syntax of Prolog text that
supports modules. The notation is that of ISO/IEC 13211-1.

Clause 5.1 defines the syntax of module text. Clause 5.2 defines
the role of the operator ‘:’.

5.1 Module text

Module text is a sequence of read-terms which denote (1)
module directives, (2) interface directives, (3) directives, and (4)
clauses of user-defined procedures.

The syntax of a module directive and of a module interface
directive is that of a directive.

module text = m text ;
Abstract: mt mt

m text = directive term, m text ;
Abstract: d � t d t

m text = clause term, m text ;
Abstract: c � t c t

m text = ;
Abstract: nil

Table 1 — The initial operator table

Priority Specifier Operator(s)
1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ,
900 fy \+
700 xfx = \=
700 xfx == \== @< @=< @> @>=
700 xfx =..
700 xfx is =:= =\= < =< > >=
600 xfy :
500 yfx + - /\ \/
400 yfx * / // rem mod << >>
200 xfx **
200 xfy ˆ
200 fy - \

Clause 6.2.4 defines the module directives and the module
interface directives. Clause 6.2.5 defines directives in addition
to those of ISO/IEC 13211-1 that can appear in a module body
and their meanings.

5.2 Terms

5.2.1 Operators

The operator table specific to a moduleM defines which atoms
will be regarded as operators in the context of the given module
moduleMwhen (1) a sequence of tokens is parsed as a read-term
by the built-in predicateread term/3 or (2) Prolog text is
prepared for execution or (3) output by the built-in predicates
write term/3, write term/2, write/1, write/2,
writeq/1, writeq/2 .

The effect of the directivesop/3 , char conversion/2
and set prolog flag/2 in modules with multiple bodies is
described in 6.2.5.4.

Table 1 defines the predefined operators. The operator‘:’ is
used for module qualification.

NOTES

1 This table is the same as table 7 of ISO/IEC 13211-1 with the
single addition of the operator ‘:’.

2 When used in a predicate indicator or predicate name ‘:’ is an
atom qualifier. This means that a predicate name can be a compound
term provided that the functor is ‘:’.

3 The operator table can be changed both by the use of the module
interface directiveop/3 and by the module directiveop/3 in the
body of a module.

6 Language concepts and semantics

This clause defines the semantic concepts of Prolog with
modules.

a) Subclause 6.1 defines the qualifying module and unqual-
ified term associated with a qualified term,

4 ISO/IEC 2000 – All rights reserved©

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:2000(E)b) Subclause 6.2 defines the division of module text into
Prolog modules,

c) Subclause 6.2.6 defines the relationship between clauses
in module text and in the complete database,

d) Subclause 6.3 defines the complete database and its
relation to Prolog modules,

e) Subclause 6.4 defines metapredicates and the process of
name qualification,

f) Subclause 6.5 defines the process of converting terms to
clauses and vice versa in the context of modules,

g) Subclause 6.6 defines the process of executing a goal in
the presence of module qualification,

h) Subclause 6.7 defines the process of executing a control
construct in the presence of module qualification.

i) Subclause 6.8 defines predicate properties,

j) Subclause 6.9 defines required flags in addition to those
required by ISO/IEC 13211-1.

k) Subclause 6.10 defines errors in addition to those required
by ISO/IEC 13211-1.

6.1 Related terms

This clause extends the definitions of clause 7.1 of ISO/IEC
13211-1.

6.1.1 Qualified and unqualified terms

6.1.1.1 Qualified terms

A qualified term is a term whose principal functor is(:)/2 .

6.1.1.2 Unqualified terms

An unqualified term is a term whose principal functor is not
(:)/2 .

6.1.1.3 Qualifying module

Given a moduleM and a termT, the associated qualifying
module QM = qm(M:T) and associated unqualified termUT =
ut(M:T) of (M:T) are defined as follows:

a) If the principal functor ofT is not (:)/2 thenqm(M:T)
is M and ut(M:T) is T;

b) If the principal functor ofT is (:)/2 with first argument
MM, and second argumentTT, thenqm(M:T) is the qualifying
module of qm(MM:TT) , and ut(M:T) is the unqualified
term ut(MM:TT) .

6.1.1.4 Metapredicate mode indicators

A metapredicate mode indicator is either a predicate indicator or
a compound termMName(Modes) each of whose arguments
is ‘:’ or ‘*’.

If the flag colon sets calling context 6.9.1 is true
shall be a compound term each of whose arguments is ‘:’ or
‘*’. In this case an argument whose position corresponds to a
‘:’ is a meta-argument, and an argument corresponding to ‘*’
shall not be a meta-argument.

6.2 Module text

Module text specifies one or more user-defined modules and the
required moduleuser . A module consists of a single module
interface and zero or more corresponding bodies. The interface
shall be prepared for execution before any of the bodies. Bodies
may be separated from the interface. If there are multiple
bodies, they need not be contiguous.

The heads of clauses in module text shall be implicitly module
qualified only by the module body in which they appear, not
by explicit qualification of the clause head.

Every procedure that is neither a control construct nor a
built-in predicate belongs to some module. Built-in predi-
cates and control constructs are visible everywhere and do
not require module qualification, except that if the flag
colon sets calling context 6.9.1 is true the builtin
metapredicates (6.4.1) , the context sensitive builtins 6.4.2 and
call/1 andcatch/3 may be module qualified for the purpose
of setting the calling context.

6.2.1 Module user

The required moduleuser contains all user-defined procedures
not defined within a body of a specific module. It has by default
an empty module interface. However, module text may contain
an explicit interface for moduleuser . Any such interface
must be loaded before any Prolog text belonging to the module
user .

NOTE — An explicit interface for moduleuser enables procedures
to be exported from moduleuser to other modules and allows
metapredicates to be defined in moduleuser .

6.2.2 Procedure Visibility

All procedures defined in a module are accessible from any
module by use of explicit module qualification. It shall be an
allowable extension to provide a mechanism that hides certain
procedures defined in a moduleM so that they cannot be
activated, inspected or modified except from within a body of
the moduleM.

A module shall not make visible by import or re-export two or
more procedures with a given (unqualified) predicate indicator
defined in different modules. If a procedure with (unqualified)
predicate indicatorPI from the complete database is visible in
M no other procedure with the same predicate indicator shall be
made visible inM.

NOTE — More than one import or re-export directive may make
visible a single procedure in a module.

6.2.3 Module interface

A module interface in module text specifies the name of the
module, the operators, character conversions and Prolog flag

5ISO/IEC 2000 – All rights reserved©

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

ISO/IEC 13211-2:2000(E)values that shall be used when the processor begins to prepare
for execution the bodies of the module, and the user-defined
procedures of a module that are

a) exported from the module,

b) re-exported from the module, and

c) defined to be metapredicates by the module.

A sequence of directives shall form the module interface of the
module with nameName if :

a) The first directive is a directivemodule(Name) .
(6.2.4.1)

b) The last directive is a directiveend
module(Name) .

(6.2.4.9)

c) Each other element of the sequence is a module interface
directive. (6.2.4.2 through 6.2.4.8)

The interface for a moduleName shall be loaded before any
body of the module.

6.2.4 Module directives

Module directives are module text which serve to 1) separate
module text into the individual modules, and 2) define operators,
character conversions and flag values that apply to the preparation
for execution of the bodies of the corresponding module.

6.2.4.1 Module directive module/1

The module directivemodule(Name) specifies that the interface
text bracketed by the directive and the matching closing interface
directive end module(Name) defines the interface to the
Prolog moduleName.

6.2.4.2 Module interface directive export/1

A module interface directiveexport(PI) in the module
interface of a moduleM, where PI is a predicate indicator,
a predicate indicator sequence or a predicate indicator list,
specifies that the moduleM makes the procedures designated by
PI available for import into or re-export by other modules.

A procedure designated byPI in a export(PI) directive
shall be that of a procedure defined in the body (or bodies) of
the moduleM.

No procedure designated byPI shall be a control construct, a
built-in predicate, or an imported procedure.

NOTE — Since control constructs and built-in predicates are visible
everywhere they cannot be exported.

6.2.4.3 Module interface directive reexport/2

A directive reexport(M, PI) in the interface of a moduleMM
whereM is an atom andPI is a predicate indicator, a predicate
indicator sequence or a predicate indicator list specifies that
the moduleMMimports from the moduleM all the procedures

designated byPI , and thatMMmakes these procedures available
for import or re-export (fromMM) by other modules.

A procedure designated byPI in a reexport(M,PI) directive
shall be that of a procedure exported or re-exported by the
module M.

No procedure designated byPI shall be a control construct or
a built-in predicate.

6.2.4.4 Module interface directive reexport/1

A module interface directivereexport(PI) in the module
interface of a moduleM, where PI is an atom, a sequence of
atoms, or a list of atoms specifies that the moduleM imports
all the user defined procedures exported or re-exported by the
modules designated byPI and thatM makes these procedures
available for import into or re-exportation by other modules.

6.2.4.5 Module interface directive metapredicate/1

A module interface directivemetapredicate(MI) in the
module interface of a moduleM, where MI is a metapredicate
mode indicator, a metapredicate mode indicator sequence, or
a metapredicate mode indicator list specifies that the module
defines and exports the metaprocedures designated byMI .

6.2.4.6 Module interface directive op/3

A module interface directiveop(Priority, Op specifier,
Operator) in the module interface of a moduleM enables
the initial operator table to be altered only for the preparation
for execution of all the bodies of the moduleM.

The argumentsPriority, Op specifier , and Operator
shall satisfy the same constraints as for the successful execution
of the built-in predicateop/3 (8.14.3 of ISO/IEC 13211-1) and
the initial operator table of the module shall be altered in the
same way.

Operators defined in a module interface directive
op(Priority, Op specifier, Operator) shall not
affect the syntax of read terms in Prolog and module texts other
than the bodies of the corresponding module.

6.2.4.7 Module interface directive charconversion/2

A module interface directivechar conversion(In char,
Out char) in the module interface of a moduleM enables
the initial character conversion mappingConvC (see 3.29 of
ISO/IEC 13211-1) to be altered only for the preparation for
execution of all the bodies of the moduleM.

The argumentsIn char , and Out char shall satisfy the
same constraints as for the successful execution of the built-in
predicatechar conversion/2 (8.14.5 of ISO/IEC 13211-1)
and ConvC shall be altered in the same way.

Character conversions defined in a module interface directive
char conversion(In char, Out char) shall not affect
the syntax of read terms in Prolog and module texts other than
the bodies of the corresponding module.

6 ISO/IEC 2000 – All rights reserved©

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13211-2:2000
https://standards.iteh.ai/catalog/standards/sist/ed5f3c71-0609-418f-9a73-

f31170b5a4fc/iso-iec-13211-2-2000

	Ó´ós|Pí]@<áÕš�9ÛŠ?tœ<ÜQ¢˝Ò�˘¹�Ö(ºIŁÈ›^7ﬁævøﬁ³‹ù3��ﬂ’L�>nvŠtü�W)Ö–`òHD\9á�›è¼NÙÛ¶L[ÇÄYˆo�

