

SLOVENSKI STANDARD SIST EN 62127-2:2008 01-januar-2008

BUXca Yý U. SIST EN 61101:2002 SIST EN 61102:2002 SIST EN 61102:2002/A1:2002 SIST EN 61220:2002 SIST EN 62092:2002

I`lfUnjc_'!'<]XfcZcb]'!'&"'XY`.'?U']VfUV]/U'nU'i`lfUnjc bU'dc`/U'Xc'(\$'A<n'fH97'*&%&+ !&.&\$\$+Ł

Ultrasonics - Hydrophones - Part 2: Calibration for ultrasonic fields up to 40 MHz (IEC (standards.iteh.ai) 62127-2:2007)

Ultraschall - Hydrophone - Teil 2; Kalibrierung für Ultraschallfelder bis zu 40 MHz (IEC 62127-2:2007) 98b580e1f148/sist-en-62127-2-2008

Ultrasons - Hydrophones - Partie 2: Etalonnage pour les champs ultrasonores jusqu'a 40 Mhz (IEC 62127-2:2007)

Ta slovenski standard je istoveten z: EN 62127-2:2007

ICS:

SIST EN 62127-2:2008

11.040.01	Medicinska oprema na splošno	Medical equipment in general
17.140.50	Elektroakustika	Electroacoustics

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

en,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 62127-2:2008</u> https://standards.iteh.ai/catalog/standards/sist/06adeda2-ac99-45ca-885b-98b580e1f148/sist-en-62127-2-2008

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 62127-2

October 2007

ICS 17.140.50

Partially supersedes EN 61101:1993, EN 61102:1993 + A1:1994, EN 61220:1995 and EN 62092:2001

English version

Ultrasonics -Hydrophones -Part 2: Calibration for ultrasonic fields up to 40 MHz (IEC 62127-2:2007)

Ultrasons -Hydrophones -Partie 2: Etalonnage pour les champs ultrasonores jusqu'à 40 Mhz (CEI 62127-2:2007)

Ultraschall -Hydrophone -Teil 2: Kalibrierung für Ultraschallfelder bis zu 40 MHz (IEC 62127-2:2007)

iTeh STANDARD PREVIEW

This European Standard was approved by CENELEC on 2007-09-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration7-2:2008

https://standards.iteh.ai/catalog/standards/sist/06adeda2-ac99-45ca-885b-Up-to-date lists and bibliographical references, concerning, such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2007 CENELEC -All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 87/353/CDV, future edition 1 of IEC 62127-2, prepared by IEC TC 87, Ultrasonics, was submitted to the IEC-CENELEC parallel Unique Acceptance Procedure and was approved by CENELEC as EN 62127-2 on 2007-09-01.

EN 62127-1, EN 62127-2 and EN 62127-3 are being published simultaneously. Together these European Standards cancel and replace EN 61101:1993, EN 61102:1993 + A1:1994, EN 61220:1995 and EN 62092:2001.

The following dates were fixed:

-	latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2008-06-01	
_	latest date by which the national standards conflicting with the EN have to be withdrawn	(dow)	2010-09-01	
Annex ZA has been added by CENELEC.				

Endorsement notice

The text of the International Standard IEC 62127-22007 was approved by CENELEC as a European Standard without any modification.

(standards.iteh.ai)

<u>SIST EN 62127-2:2008</u> https://standards.iteh.ai/catalog/standards/sist/06adeda2-ac99-45ca-885b-98b580e1f148/sist-en-62127-2-2008

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	Year	Title	<u>EN/HD</u>	Year
IEC 60050-801	1994	International Electrotechnical Vocabulary (IEV) - Chapter 801: Acoustics and electroacoustics	-	-
IEC 60565	_1)	Underwater acoustics - Hydrophones - Calibration in the frequency range 0,01 Hz to 1 MHz	EN 60565	2007 ²⁾
IEC 61161	2006	Ultrasonics - Power measurement - Radiation force balances and performance requirements	EN 61161	2007
IEC 61828	2001	Ultrasonics - Focusing transducers - Definitions and measurement methods for the transmitted fields	EN 61828	2001
IEC 62127-1	_1) https://sta	Ultrasonics - Hydrophones - Part 1: Measurement and characterization of medical ultrasonic fields up to 40 MHz	EN 62127-1 ca-885b-	2007 ²⁾
IEC 62127-3	_1)	Ultrasonics - Hydrophones - Part 3: Properties of hydrophones for ultrasonic fields up to 40 MHz	EN 62127-3	2007 ²⁾

¹⁾ Undated reference.

²⁾ Valid edition at date of issue.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 62127-2:2008</u> https://standards.iteh.ai/catalog/standards/sist/06adeda2-ac99-45ca-885b-98b580e1f148/sist-en-62127-2-2008

Edition 1.0 2007-08

INTERNATIONAL STANDARD

Ultrasonics – Hydroptones FANDARD PREVIEW Part 2: Calibration for ultrasonic fields up to 40 MHz

> SIST EN 62127-2:2008 https://standards.iteh.ai/catalog/standards/sist/06adeda2-ac99-45ca-885b-98b580e1f148/sist-en-62127-2-2008

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 17.140.50

ISBN 2-8318-9277-5

CONTENTS

FOREWORD			
INTRODUCTION			
1	Scop	e	8
2	Normative references 8		
3	Term	s definitions and symbols	g
4		f avmhala	12
4			. 13
5	Over	view of calibration procedures	.15
	5.1	Principles	.15
	5.2	Summary of calibration procedures	. 16
	5.3	Reporting of results	.17
~	5.4	Recommended calibration periods	.18
6	Gene	ric requirements of a hydrophone calibration system	. 19
	6.1	Mechanical positioning	. 19
		6.1.1 General	. 19
		6.1.2 Accuracy of the axial hydrophone position	. 19
		6.1.3 Accuracy of the lateral hydrophone position	. 19
	6.2	Temperature measurements and temperature stability	. 19
	6.3	Hydrophone size	.20
	6.4	Measurement vessel and water properties	. 20
	6.5	Measurement of output voltage	. 20
7	Elect	rical considerations <u>SISTEN 62127-2:2008</u>	.21
	7.1	Signal type	.21
	7.2	Earthing	.21
	7.3	Measurement of hydrophone output voltage	.21
		7.3.1 General	.21
		7.3.2 Electrical loading by measuring instrument	.21
		7.3.3 Electrical loading by extension cables	. 22
		7.3.4 Noise	. 22
		7.3.5 Cross-talk (radio-frequency <i>rf</i> pick-up) and acoustic interference	. 22
		7.3.6 Integral hydrophone pre-amplifiers	. 23
8	Prep	aration of hydrophones	.23
	8.1	General	.23
	8.2	Wetting	.23
	8.3	Hydrophone support	.23
	8.4	Influence of cable	.23
9	Free	field reciprocity calibration	.23
	9.1	General	.23
	9.2	Object	.23
	9.3	General principles	.24
		9.3.1 General	.24
		9.3.2 Three-transducer reciprocity calibration method	. 24
		9.3.3 Self-reciprocity calibration method	.24
		9.3.4 Two-transducer reciprocity calibration method	. 24
	9.4	Two-transducer reciprocity calibration method	.24
		9.4.1 Apparatus	.24

		9.4.2	Procedure	25
10	Free	field cal	ibration by planar scanning	25
	10.1	Genera	۱	25
	10.2	Object		25
	10.3	Genera	I principle	25
	10.4	Proced	ural requirements	27
		10.4.1	Hydrophone scanning	27
	10.5	Proced	ure	27
		10.5.1	Power measurement	27
		10.5.2	Transducer mounting	27
		10.5.3	Measurement conditions	27
	40.0	10.5.4	Measurements	28
	10.6	Correct	ions and sources of uncertainty	28
11	Free	tield cal	ibration by optical interferometry	28
	11.1	Genera	ll	28
10	11.2	Princip		28
12	Calib	ration by	/ comparison using a standard hydrophone	28
	12.1	Genera	ll	28
	12.2	Object		28
	12.3	Princip	iTeh STANDARD PREVIEW	29
	12.4			29
		12.4.1	Source transducer drive signal	29
		12.4.2	Measurement system	29
	12 5	Proced	UPtras://standards.itah.ai/ostalog/standards/sist/06adeda2.ac00.45ca.885h	30
	12.0	12.5.1	Measurements (Typel): determination of the directional response of a	
			hydrophone	30
		12.5.2	Measurements (Type II): calibration by comparison using a standard	
	40.0		hydrophone	30
	12.6	Maximi	Im hydrophone size	31
		/. .		
Ann	ex A	(informa	tive) Assessment of uncertainty in free field calibration of	32
Δnn	ov R	(informa	tive) Behaviour of PVDE polymer sensors in high intensity ultrasonic	52
field	ls			34
Ann	ex C	(informa	tive) Electrical loading corrections	37
Ann	ex D	` (informa	tive) Absolute calibration of hydrophones using the planar scanning	
tech	nique	;		38
Ann	ex E	(informa	tive) Properties of water	46
Ann	ex F	(informa	tive) The absolute calibration of hydrophones by optical	
inte	rferon	netry up	to 40 MHz	48
Ann	ex G	(informa	tive) Waveform concepts	58
Ann	ex H	(informa	tive) Time delay spectrometry – requirements and a brief review of	
the	techn	ique		68
Ann	ex I (informat	ive) Determination of the phase response of hydrophones	71
Ann	ex J (informa	tive) Maximum size considerations for the active element of a	
nyd	ropho	ne		/ /

Bibliography	79
Figure F.1 – Experimental set-up of the interferometric foil technique	51
Figure F.2 – End-of-cable open-circuit sensitivity, $M_{\rm C}$, of a coplanar membrane hydrophone	53
Figure F.3 – Hydrophone waveform generated by a 9 μ m coplanar membrane hydrophone positioned at the focus of a 5 MHz transducer (focal length 51 mm)	54
Figure F.4 – Interferometer (displacement) waveform generated with the pellicle positioned at the focus of the 5 MHz transducer (focal position 51 mm)	55
Figure F.5 – Frequency spectrum of the displacement waveform (lower curve) and the differentiated displacement waveform (upper curve)	55
Figure F.6 – Sensitivity of a 0,2 mm active element diameter of a 9 μ m bilaminar membrane hydrophone determined at 5 MHz intervals over the frequency range 5 MHz to 60 MHz	56
Figure G.1 – Coordinates of a field point, P, in the near field of a plane- circular source transducer of radius, \boldsymbol{a}_{t}	65
Figure I.1 – Phase of end-of-cable open-circuit sensitivity for two membrane hydrophones	73
Figure I.2 – Phase of end-of-cable open-circuit sensitivity for a \emptyset 0,2 mm needle hydrophone	75
iTeh STANDARD PREVIEW	
Table 1 – List of typical uncertainty values obtained by the calibration methods specified in this standard and for the frequency range listed here	17
Table E.1 – Speed of sound c and specific acoustic impedance, ρc , as a function of temperature, for propagation in water $\frac{SIST EN 62127-22008}{SIST EN 62127-22008}$	46
Table G.1 – Temporal waveform and hydrophone position concepts described in this Annex	58

Table I.1. – Example of uncertainties (where a coverage factor, k = 2, is used) for a	
HTDS phase calibration of a needle hydrophone with a diameter of 0,2 mm, expressed	
at a confidence level of 95 %	73

- 4 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ULTRASONICS – HYDROPHONES –

Part 2: Calibration for ultrasonic fields up to 40 MHz

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any enduser.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. SIST EN 62127-2:2008
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an EC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62127-2 has been prepared by IEC technical committee 87: Ultrasonics.

IEC 62127-1, IEC 62127-2 and IEC 62127-3 are being published simultaneously. Together these cancel and replace IEC 60866:1987, IEC 61101:1991, IEC 61102:1991, IEC 61220:1993 and IEC 62092:2001.

The text of this standard is based on the following documents:

Enquiry draft	Report on voting
87/353/CDV	87/372/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of IEC 62127 series, published under the general title *Ultrasonics* – *Hydrophones,* can be found on the IEC website.

NOTE Words in **bold** in the text are defined in Clause 3.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition; or
- amended.

A bilingual version of this publication may be issued at a later date.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62127-2:2008 https://standards.iteh.ai/catalog/standards/sist/06adeda2-ac99-45ca-885b-98b580e1f148/sist-en-62127-2-2008

INTRODUCTION

The spatial and temporal distribution of acoustic pressure in an ultrasonic field in a liquid medium is commonly determined using miniature ultrasonic **hydrophones**. These devices are not absolute measurement instruments and require calibration. The purpose of this part of IEC 62127 is to specify those calibration methods to be used in determining the response of a **hydrophone** in the ultrasonic range, i.e. above 20 kHz up to a frequency of 40 MHz. The main **hydrophone** application in this context lies in the measurement of ultrasonic fields emitted by medical diagnostic equipment in water. **Hydrophone** behaviour over this wide frequency band is required in order to reliably characterize the acoustic parameters of the applied acoustic field. In particular, the frequency range above 15 MHz is important to fully characterize this equipment, primarily due to the increased appearance of high-frequency components in the ultrasonic signals, caused by non-linear propagation. In addition, the number of medical ultrasonic systems that use frequencies above 15 MHz, particularly intra-operative probes, is growing. It has turned out in recent years that the **hydrophone** response below 0,5 MHz is also required to reliably determine the peak-negative (rarefactional) acoustic pressure.

While the term "hydrophone" can be used in a wider sense, it is understood here as referring to miniature piezoelectric hydrophones. It is this instrument type that is used today in various areas of medical ultrasonics and, in particular, to characterize quantitatively the field structure of medical diagnostic instruments. With regard to other pressure sensor types, such as those based on fibre optics, some of the requirements of this standard are applicable to these as well but others are not. If in the future these other "hydrophone" types gain more importance in field measurement practice, their characteristics and calibration will have to be dealt with in a revised version of this standard or in a separate one.

NOTE This standard covers the ultrasonic frequency range, from 20 kHz to an upper frequency of 40 MHz. Standards dealing with hydrophone properties (IEC 62127-3) and hydrophone use (IEC 62127-1) are being developed in parallel as part of a programme of maintenance activities aimed at restructuring and merging, where possible, all existing ultrasonic hydrophone standards 6 This will eventually lead to unified standards covering the whole field of practical hydrophone application. application alog/standards/sist/06adeda2-ac99-45ca-885b-

98b580e1f148/sist-en-62127-2-2008

ULTRASONICS — HYDROPHONES —

Part 2: Calibration for ultrasonic fields up to 40 MHz

1 Scope

This part of IEC 62127 specifies:

- absolute hydrophone calibration methods;
- relative (comparative) hydrophone calibration methods.

Recommendations and references to accepted literature are made for the various relative and absolute calibration methods in the frequency range covered by this standard.

This standard is applicable to

 hydrophones used for measurements made in water and in the ultrasonic frequency range up to 40 MHz;

NOTE 1 Although some physiotherapy medical applications of medical ultrasound are developing which operate in the frequency range 40 kHz to 100 kHz, the primary frequency range of diagnostic imaging remains above 2 MHz. It has recently been established that, even in the latter case, the **hydrophone** response at substantially lower frequencies can influence measurements made of key acoustic parameters [1].

 hydrophones employing circular piezoelectric sensor elements, designed to measure the pulsed wave and continuous wave ultrasonic fields generated by ultrasonic equipment;

NOTE 2 Some hydrophones can have non circular active elements, arising from slight deviations from a circular structure caused, for example by electrode structure, or conversely, the active elements can actually be squares. The clauses within this standard remain valid, although in these cases, special attention should be paid to the directional response and to the effective radii of the active element through various axes of rotation.

• hydrophones with or without a hydrophone pre-amplifier.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-801:1994, International Electrotechnical Vocabulary – Chapter 801: Acoustics and electro-acoustics

IEC 60565, Underwater acoustics – Hydrophones – Calibration in the frequency range 0,01 Hz to 1 MHz

IEC 61161:2006, Ultrasonics – Power measurement – Radiation force balances and performance requirements

IEC 61828:2006, Ultrasonics – Focusing transducers – Definitions and measurement methods for the transmitted fields

IEC 62127-1, Ultrasonics – Hydrophones – Part 1: Measurement and characterization of medical ultrasonic fields up to 40 MHz

IEC 62127-3, Ultrasonics – Hydrophones – Part 3: Properties of hydrophones for ultrasonic fields up to 40 MHz

3 Terms, definitions and symbols

For the purposes of this document, the terms and definitions given in IEC 62127-1 and the following apply.

3.1

acoustic centre

point on or near a transducer from which the spherically divergent sound waves emitted by the transducer, and observable at remote points, appear to diverge

3.2

beam axis

straight line that passes through the **beam centrepoints** of two planes perpendicular to the line which connects the point of maximal **pulse-pressure-squared integral** with the centre of the **external transducer aperture**

NOTE 1 The location of the first plane is the location of the plane containing the maximum **pulse-pressure-squared integral** or, alternatively, is one containing a single main lobe which is in the focal Fraunhofer zone. The location of the second plane is as far as is practicable from the first plane and parallel to the first with the same two orthogonal scan lines (*x* and *y* axes) used for the first plane.

NOTE 2 In a number of cases, the term **pulse-pressure-squared integral** is replaced in the above definition by any linearly related quantity, for example

- a) in the case of a continuous wave signal the term **pulse-pressure-squared integral** is replaced by mean square acoustic pressure as defined in IEC 61689, NDARD PREVIEW
- b) in cases where signal synchronisation with the scanframe is not available the term **pulse-pressure-squared** integral may be replaced by temporal average intensity. Iten.al)

NOTE 3 See Figure 1 of IEC 62127-1.

SIST EN 62127-2:2008

NOTE 4 Definition addpted/fromdteds/62/12/3/datalog/standards/sist/06adeda2-ac99-45ca-885b-98b580e1f148/sist-en-62127-2-2008

3.3

beam centrepoint

position determined by the intersection of two lines passing through the **beamwidth midpoints** of two orthogonal planes, xz and yz

NOTE Definition adopted from IEC 61828:2001.

3.4 beamwidth *w*₆, *w*₁₂, *w*₂₀

greatest distance between two points on a specified axis perpendicular to the **beam axis** where the **pulse-pressure-squared integral** falls below its maximum on the specified axis by a specified amount

NOTE 1 In a number of cases, the term **pulse-pressure-squared integral** is replaced in the above definition by any linearly related quantity, for example

- a) in the case of a continuous wave signal the term **pulse-pressure-squared integral** is replaced by mean square acoustic pressure as defined in IEC 61689,
- b) in cases where signal synchronisation with the scanframe is not available the term **pulse-pressure-squared integral** may be replaced by **temporal average intensity**.

NOTE 2 Commonly used **beamwidths** are specified at -6 dB, -12 dB and -20 dB levels below the maximum. The decibel calculation implies taking 10 times the logarithm of the ratios of the integrals.

NOTE 3 Beamwidth is expressed in metres (m).

NOTE 4 Definition adopted from IEC 62127-1.