IEC/TR 61282-10 (First edition - 2013)

Fibre optic communication system design guides -Part 10: Characterization of the quality of optical vector-modulated signals with the error vector magnitude

CORRIGENDUM 1

4.2 Normalization of the measured data

Replace the existing text of the second paragraph by the following new text:

The normalization factor α is chosen to match the measured vectors to the reference by first finding the value of a scaling factor β for the reference vectors that minimizes the corresponding unnormalized EVM_{rms} without changing the distribution of the measured vectors. Then the inverse of β is used as α to scale the measured vectors to the normalized reference. For this purpose, the unnormalized EVM_{rms} is expressed as

$$U = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left| \beta \times \mathbf{S}_{\text{ref}}^{r(n)} - \mathbf{S}_{\text{meas}}(n) \right|^{2}}$$
where $\mathbf{S}_{\text{meas}}(n) = \begin{pmatrix} I_{\text{meas}}(n) \\ Q_{\text{meas}}(n) \end{pmatrix}$
(6)

The value of β that gives minimum U is determined by solving

$$\frac{1EC\ TR\ 61282}{\partial \beta} = 0_{13/COR1:2013}$$
https://standards.iteh.ai/catalog/standards/iec/21a96267-22ec-4c1e-a85b-15d820857030/iec-tr-61282-10-2013-cor1-2013

leading to
$$\alpha = \frac{1}{\beta} = \frac{\sum_{n=1}^{N} \left(I_{\text{ref}}^{r(n)^2} + Q_{\text{ref}}^{r(n)^2} \right)}{\sum_{n=1}^{N} \left(I_{\text{ref}}^{r(n)} \times I_{\text{meas}}(n) + Q_{\text{ref}}^{r(n)} \times Q_{\text{meas}}(n) \right)}$$
(8)