

Edition 1.0 2015-10

TECHNICAL SPECIFICATION

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00

CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications, Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

More than 60 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

Edition 1.0 2015-10

TECHNICAL SPECIFICATION

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160 ISBN 978-2-8322-2957-6

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	OREWC	RD	4
1	Scop	e	6
2	Norm	native references	6
3	Term	is, definitions, symbols and abbreviations	6
	3.1	Terms, definitions and symbols	
	3.2	Abbreviations	
4	Test	circuit and equipment	
	4.1	General	
	4.2		9
	4.3		9
	4.3.1		9
	4.3.2		10
	4.3.3	Short-circuit emulator	10
	4.3.4	Converter based grid simulator	13
5	Test		13
	5.1	Test protocol	13
	5.2	rest curve	15
	5.3	Test procedure	16
	5.3.1	Pre-test	
	5.3.2	No-load test	16
	5.3.3		
	5.3.4		17
6	Asse	ssment criteria	17
Α		(informative) Circuit raults and voltage drops	
	ta.1ard	Fault types	-62918 ⁻²
	A.2	Voltage drops	
	A.2.1	General	20
	A.2.2		
	A.2.3		
	A.2.2		
	A.2.5	3	
A		(informative) Determination of critical performance values in LVRT testing	24
	B.1	General	
	B.2	Drop depth ratio	
	B.3	Ride-through time	
	B.4	Reactive current	
Б.	B.5	Active power	
В	ibliograp	phy	26
Fi	igure 1 -	- Testing circuit diagram	9
Fi	igure 2 -	- Short-circuit emulator	11
Fi	igure 3 -	- Converter device example	13
Fi	igure 4 -	- LVRT curve example	16
Fi	igure 5 -	- Tolerance of voltage drop	17

Figure A.1 – Grid fault diagram	20
Figure A.2 – Diagram of voltage vector for three-phase short-circuit fault	20
Figure A.3 – Diagram of voltage vector of two-phase (BC) short-circuit fault with ground	21
Figure A.4 – Diagram of voltage vector of two-phase (BC) short-circuit fault	22
Figure A.5 – Diagram of voltage vector of single-phase (A) short-circuit fault with ground	23
Figure B.1 – Determination of reactive current output	25
Figure B.2 – Determination of active power recovery	25
Table 1 – Accuracy of measurements	10
Table 2 – Fault type and switch status	12
Table 3 – Test specification for LVRT (indicative)	14
Table A.1 – Short-circuit paths for different fault types	18
Table A.2 – Amplitude and phase changes in three-phase short circuit fault	21
Table A.3 – Amplitude and phase changes in two-phase (BC) short-circuit fault with ground	22
Table A.4 – Amplitude and phase changes in two-phase (BC) short-circuit fault	22
Table A.5 – Amplitude and phase changes in single phase (A) short-circuit fault with ground	23

>2910:2015 353-2342-41ee-b88f-0acc95b5374b/iec-ts-62910-2015

INTERNATIONAL ELECTROTECHNICAL COMMISSION

UTILITY-INTERCONNECTED PHOTOVOLTAIC INVERTERS – TEST PROCEDURE FOR LOW VOLTAGE RIDE-THROUGH MEASUREMENTS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62910, which is a technical specification, has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
82/884/DTS	82/1005/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard.
- reconfirmed.
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

UTILITY-INTERCONNECTED PHOTOVOLTAIC INVERTERS – TEST PROCEDURE FOR LOW VOLTAGE RIDE-THROUGH MEASUREMENTS

1 Scope

This Technical Specification provides a test procedure for evaluating the performance of Low Voltage Ride-Through (LVRT) functions in inverters used in utility-interconnected PV systems.

The technical specification is most applicable to large systems where PV inverters are connected to utility HV distribution systems. However, the applicable procedures may also be used for LV installations in locations where evolving LVRT requirements include such installations, e.g. single-phase or 3-phase systems.

The assessed LVRT performance is valid only for the specific configuration and operational mode of the inverter under test. Separate assessment is required for the inverter in other factory or user-settable configurations, as these may cause the inverter LVRT response to behave differently.

The measurement procedures are designed to be as non-site specific as possible, so that LVRT characteristics measured at one test site, for example, can also be considered valid at other sites.

This technical specification is for testing of PV inverters, though it contains information that may also be useful for testing of a complete PV power plant consisting of multiple inverters connected at a single point to the utility grid. It further provides a basis for utility-interconnected PV inverter numerical simulation and model validation.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61400-21.2008, Wind turbines – Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines

3 Terms, definitions, symbols and abbreviations

3.1 Terms, definitions and symbols

For the purposes of this document, the following terms, definitions and symbols apply.

3.1.1

drop depth

magnitude of voltage drop during a fault or simulated fault, as a percentage of the nominal supply voltage

3.1.2

double drop

sudden decline of the nominal voltage to a value below 90 % of the voltage of PCC, followed after a short time by a voltage recovery, which happened twice. Voltage changes which do not

reduce the voltage to below 90 % of the voltage of PCC are not considered to be voltage drops

3.1.3

equipment under test

EUT

EUT indicates the equipment on which these tests are performed and refers to the utilityinterconnected PV inverter. During test period, EUT is connected with PV simulator instead of real PV modules on the DC side, while AC side is connected with grid

3.1.4

IT system

IT power system has all live parts isolated from earth or one point connected to earth through an impedance. The exposed-conductive-parts of the electrical installation are earthed independently or collectively or to the earthing of the system

[SOURCE: IEC 60364-1:2005, 312.2.3]

3.1.5

 $\emph{\textbf{I}}_{\mathbf{q}}$ output reactive current of EUT

3.1.6

low voltage ride through LVRT

capability of an inverter to continue generating power to connected loads during a limited duration loss or drop of grid voltage

3.1.7

maximum MPP voltage

maximum voltage at which the EUT can convert its rated power under MPPT conditions

[SOURCE: EN 50530:2010]

3.1.8

maximum power point tracking

MPPT

control strategy of operation at maximum power point or nearby

3.1.9

minimum MPP voltage

minimum voltage at which the EUT can convert its rated power under MPPT conditions

[SOURCE: EN 50530:2010]

3.1.10

N_{FUT}

access point of the EUT during the test

3.1.11

rated power of EUT

3.1.12

point of common coupling

PCC

point of a power supply network, electrically nearest to a particular load, at which other loads are, or may be, connected

Note 1 to entry: These loads can be either devices, equipment or system, or distinct customer's installations.

Note 2 to entry: In some applications, the term "point of common coupling" is restricted to public networks.

[SOURCE: IEC 60050-161:1990, 161-07-15]

3.1.13

proportionality constant K

K-factor

voltage support of EUT in accordance with the voltage drops. The K-factor is to be specified by the EUT manufacturer.

3.1.14

PV array simulator

simulator that has I-V characteristics equivalent to a PV array

3.1.15

PV simulator MPP voltage

U_{MPP. PVS}

MPP voltage of the setting PV curve that is provided by the PV simulator

3.1.16

SEUT

apparent short-circuit power at N_{EUT}

3.1.17

single drop

sudden decline of the nominal voltage to a value below 90 % of the voltage of PCC, followed after a short time by a voltage recovery, which happened once. Voltage changes which do not reduce the voltage to below 90 % of the voltage of PCC are not considered to be voltage drops

3.1.18

 Z_{grid}

grid short-circuit impedance value of the MP1 (see Figure 1)

3.1.19

Z_{i}

impedance value between the fault point and PCC

3.1.20

impedance value between the fault point and EUT

3.2 **Abbreviations**

AC alternating current

A/D analog to digital

DC direct current

HV high voltage

LV low voltage

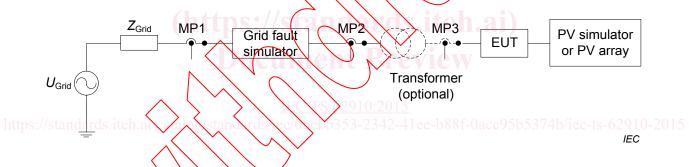
MV middle voltage

RMS root mean square

4 Test circuit and equipment

4.1 General

The circuits and equipment described in this clause are developed to allow tests that simulate the full range of anticipated grid faults, including:


- Single phase to ground fault (any phase).
- Two phase isolated fault, between any two phases.
- Two phase grounded fault, involving any two phases.
- Three phase short-circuit fault.

A full discussion of these faults and the resulting impact on voltage magnitude and phase angles is included in Annex A.

The short circuit emulator and grid simulator described in 4.3.3 and 4.3.4 are informative examples and are not intended to restrict design flexibility. Other designs may be used to achieve equivalent test functionality.

4.2 Test circuit

The LVRT test circuit includes a DC source, the EUT, a grid fault simulator and the grid. A PV simulator (or PV array) provides input energy for the EUT. The output of the EUT is connected to the grid via a grid fault simulator, as shown in Figure 1.

NOTE MP1 is the measurement point between the grid and the grid fault simulator; MP2 is the measurement point at the high voltage side of the transformer; MP3 is the measurement point at the low voltage side of the transformer.

Figure 1 – Testing circuit diagram

4.3 Test equipment

4.3.1 Measuring instruments

Waveforms shall be measured by a device with memory function, for example, a storage or digital oscilloscope, or a high speed data acquisition device. Accuracy of the oscilloscope or data acquisition system should be at least 0,2 % of full scale. The analogue to A/D of the measurement device shall have at least 12 bit resolution (in order to maintain the required measurement accuracy).

Voltage transducers (or voltage transformers) and current transducers (or current transformers) are the required sensors for measurement. The accuracy of the transducers should be 0,5 % of full scale or better. It is necessary to select the transducer measuring range depending on the normal value of the signal to be measured. The selected measuring range shall not exceed 150 % of the normal value of the measured signal. The transducer accuracy requirements are shown in Table 1.