

Edition 1.0 2017-01

INTERNATIONAL STANDARD

Semiconductor devices – Micro-electromechanical devices Part 27: Bond strength test for glass frit bonded structures using micro-chevrontests (MCT)

> <u>IEC 62047-27:2017</u> https://standards.iteh.ai/catalog/standards/sist/7182464d-c958-4756-a95e-6739abdf85d1/iec-62047-27-2017

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

details all new publications released. Available on the and 47-17/you wish to give us your feedback on this publication or also once a month by email ps://standards.itch.ai/catalog/standardneed/further/assistance,/please.contact the Customer Service 6739abdf85d1/iec-Centre:255@jec.ch.

Edition 1.0 2017-01

INTERNATIONAL STANDARD

Semiconductor devices – Micro-electromechanical devices Part 27: Bond strength test for glass frit bonded structures using micro-chevrontests (MCT)

<u>IEC 62047-27:2017</u> https://standards.iteh.ai/catalog/standards/sist/7182464d-c958-4756-a95e-6739abdf85d1/iec-62047-27-2017

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.080.99

ISBN 978-2-8322-3831-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	FOREWORD				
IN	TRODU	CTION	5		
1	Scop	e	6		
2	Norm	ative references	7		
3	Term	s, definitions, symbols and abbreviated terms	7		
	3.1	Terms and definitions	7		
	3.2	Symbols and abbreviated terms	7		
4	Princ	iple	8		
5	Test	setup	8		
	5.1	General	8		
	5.2	Actuator	8		
	5.3	Force transducers	8		
	5.4	Mounting	8		
	5.5	Data acquisition	8		
6	Spec	imens	9		
	6.1	Sample design	9		
	6.2	Determination and verification of the specimen geometry!	11		
7	Cond	uction of the test	11		
8	Test	parameter	12		
	8.1	Test velocity	12		
	8.2	Specimentalignments.itch.ai/catalog/standards/sist/7182464d-c958-4756-a95c	13		
	8.3	Environmental conditions 39 abd 185 d1/iec-62047-27-2017	13		
9	Analy	vsis and evaluation	13		
	9.1	General requirements for test series	13		
	9.2	Valid test	13		
	9.3	Calculation of the fracture toughness of the glass frit connection	14		
4.0	9.4	Statistical evaluation	15		
10	lest	report	15		
Bi	bliograp	hy	16		
Fi	gure 1 -	· Test setup of the micro-chevron-test	6		
Fi	gure 2 -	- Standard geometry design of glass frit specimen	10		
Fi	gure 3 -	Design of the load application elements	11		
Fig	gure 4 -	Permissible deviation for stud application	12		
Fig	gure 5 -	· Connection of the free sample parts as a result of the application of the			
ар	plied fo	rce initiation elements	12		
Fi	gure 6 -	- Exemplary measurement graph of a valid attempt	14		
Та	ıble 1 –	Geometry factors in relation to substrate thickness	14		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – MICRO-ELECTROMECHANICAL DEVICES

Part 27: Bond strength test for glass frit bonded structures using micro-chevron-tests (MCT)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. https://standards.iteh.ai/catalog/standards/sist/7182464d-c958-4756-a95e-
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62047-27 has been prepared by subcommittee 47F: Microelectromechanical systems, of IEC technical committee 47: Semiconductor devices.

The text of this standard is based on the following documents:

CDV	Report on voting
47F/230A/CDV	47F/259/RVC

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62047 series, published under the general title *Semiconductor devices* – *Micro-electromechanical devices*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 62047-27:2017</u> https://standards.iteh.ai/catalog/standards/sist/7182464d-c958-4756-a95e-6739abdf85d1/iec-62047-27-2017 IEC 62047-27:2017 © IEC 2017

INTRODUCTION

MEMS devices, e.g. for automotive applications, have to ensure lifecycles of up to 15 years or more. In order to guarantee functionality and reliability of the used interconnection technologies, qualified test methods are required for evaluating the quality and strength of the bonding interfaces. One of the preferred interconnection technologies for MEMS encapsulation is glass frit bonding, using an additional intermediate bond layer.

The micro-chevron-test is an experimental method to determine the fracture toughness of brittle materials or bond interfaces using specifically designed test chips (micro-chevron-samples) under defined load conditions. It was established for characterizing the strength of wafer bonds without additional intermediate bond layers. By analysis of test results from a series of tests at the Fraunhofer Institute for Mechanics of Materials and the Fraunhofer Institute for Electronic Nano Systems with different geometry and layout of the test-probes, the micro-chevron-test was established for the bonding reliability of glass frit bonded devices as well.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 62047-27:2017</u> https://standards.iteh.ai/catalog/standards/sist/7182464d-c958-4756-a95e-6739abdf85d1/iec-62047-27-2017

SEMICONDUCTOR DEVICES – MICRO-ELECTROMECHANICAL DEVICES

Part 27: Bond strength test for glass frit bonded structures using micro-chevron-tests (MCT)

1 Scope

This part of IEC 62047 specifies a method for assessing the bond strength of glass frit bonded structures using micro-chevron-tests (MCT). It describes suitable sample geometry and provides guidance for the design of deviating sample geometries.

The micro-chevron-test is an experimental method to determine the fracture toughness K_{IC} of brittle materials or bond interfaces using specifically designed test chips (micro-chevron-samples) under defined load conditions (crack opening mode I). Owing to its high precision and low variance, it is suitable for analysing the influence of different process parameters on bond strength as well as for quality assurance.

The exemplary setup of the micro-chevron-test is given in Figure 1.

Key

- 1 upper glued stud for application of tensile force
- 2 micro-chevron-test sample with patterned glass-frit-interface
- 3 lower glued stud for application of tensile force
- F applied force

Figure 1 – Test setup of the micro-chevron-test

These operational instructions are applicable for symmetrically glass frit bonded siliconsilicon-stacks, i.e. the joint upper and lower chip of the chevron sample exhibit identical thickness and mechanical properties.

The method is suitable for test samples, which are either produced directly from individual chips in corresponding dimensions, or for integrated samples, which have been singled out from processed wafers using suitable methods.

This document determines preferential dimensions for samples as well as parameters for the test conditions. Deviating geometries can potentially influence the viability of the tests as well as the comparability of the results. On that score, all parameters are determined and documented accurately.

2 Normative references

There are no normative references in this document.

3 Terms, definitions, symbols and abbreviated terms

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses: (standards.iteh.ai)

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform, available at http://www.iso.org/obp.6-a95e-
- 3.2 Symbols and abbreviated terms

Symbols	Unit	Descriptions
A_{Bond}	mm ²	effective bonding surface, represented by the area of the glass frit stripes
A Chevron	mm ²	area of total chevron geometry
a ₀	mm	initial crack length
a _{crit}	mm	critical crack length
Ь	mm	sample width
C _F		bond area ratio
t_{w1}, t_{w2}	μm	wafer thickness 1-top wafer / 2-bottom wafer
F _{max}	N	experimentally determined maximum force
g _s	mm	width of glass frit bond stripes
K _{IC}	MPa m ^{0,5}	fracture toughness of bonding interface
l	mm	sample length
v	μm/s	testing velocity
ws	mm	distance between glass frit bond stripes
Y _{min}		geometry factor

4 Principle

Strength measurement by means of micro-chevron-testing is based on a mode I crack opening within the bonding interlayer. Studs, applied to the surface of the chips, thus transfer a tensile load to the specimen in z-direction (see Figure 1). Special requirements are to be met when aligning specimens in the test setup in order to avoid additional shear stress within the bonding interface, and thus avoiding a mixed mode loading of the bond connection.

The applied force F leads to an increase of the stress intensity factor K_1 at the tip of the chevron geometry a_0 . If the stress intensity factor exceeds the fracture toughness, self-initiation of a defined crack with subsequent crack growth will start in this area. While the local stress intensity factor increases with growing crack length, the widening of the crack front decreases the stress intensity factor. As a consequence of these two countermechanisms, initially a quasi-stable crack propagation occurs in the brittle material. Hence, further crack growth – up to the critical crack length a_{crit} – requires an increase of the introduced force up to the maximum value F_{max} . As a result of the insetting instable crack propagation, the critical failure of the specimen occurs. The critical crack length a_{crit} is solely determined by the geometry of the used specimen and can be calculated using finite element analysis. An additional measurement based determination of the crack length is unnecessary due to the described crack propagation characteristics.

5 Test setup

General

5.1

iTeh STANDARD PREVIEW

The test setup should be suitable for transferring small forces and displacements onto glass frit bonded specimens. The setup consists of an actuator, allowing the loading of the specimen, a load cell for measuring the applied force, a controller for setting a constant displacement-controlled loading rate a positioning system for aligning specimens within the experimental setup, and a recording tool to register force and displacement. Besides a special test setup, universal test equipment adapted for the purposes of this test may be used.

5.2 Actuator

The specimen load requires an actuator, which generates a linear force application at constant loading velocity. A displacement rate between $0.5 \,\mu$ m/s and $10 \,\mu$ m/s is recommended to determine material characteristics.

5.3 Force transducers

The load cell should be able to measure small forces with sufficient accuracy. When using the recommended geometry of the specimen, a 20 N load cell with a category of accuracy of 0,1 % proved adequate.

5.4 Mounting

In order to cause a mode I crack opening in the specimen, accurate positioning of the tested specimen within the experimental setup is necessary. The mounting system should allow rotation around all three axes in order to provide symmetrical loading of the specimens and to minimize shear force effects. The points of force application of the specimen, the actuator and load cell shall be aligned in one axis.

5.5 Data acquisition

A memory unit shall be integrated into the test setup in order to enable a subsequent evaluation of the tests. To accurately map the force-displacement curve, even at test speeds of 10 μ m/s, care shall be taken for a sufficient sampling rate. A sampling rate of at least 10 Hz is recommended.

IEC 62047-27:2017 © IEC 2017

6 Specimens

Sample design 6.1

Specimens for the determination of fracture toughness shall meet the following requirements. The recommended specimen geometry with all associated parameters is given in Figure 2.

- The geometrical dimensions of the chevron geometry (initial crack lengths a_0 and the chevron notch angle φ) have to be inspected, i.e. by using infrared transmission or scanning acoustic microscopy. Deviations significantly influence the geometry factor and lead to inaccuracies within the calculated fracture toughness. Therefore, the geometry given in Figure 2 is required.
- Due to the production process of the glass frit interlayers, for example by means of a screen printing process, the chevron geometry shall be structured as stripe shaped. The stripes should be kept parallel to the direction of the crack propagation (x-direction in Figure 1).
- The widths of the glass frit stripes g_s need to be adapted to the frame widths of the equivalent industrial product to ensure the comparability of the strength properties of the connection.
- The distance between the glass frit stripes w_s shall be set depending on the stripe width g_s within the following range:

 $0.5 \times g_s \le w_s \le 1.5 \times g_s$ By adapting the distance between the stripes within this range, the maximum measured forces can be adjusted to the available test equipment.

The stripe structure shall be chosen such that the triangle geometry will be reproduced as homogenously as possible. The number, of stripes should be uneven to create a symmetrical design://standards.iteh.ai/catalog/standards/sist/7182464d-c958-4756-a95e-

The thickness of the individual silicon chips 2047and 2007 directly influences the geometry factor of the specimens. The thickness of the two composite chips or wafers should be equal (symmetrical design: $t_{w1} = t_{w2}$).

Using asymmetrical specimens $t_{w1} \neq t_{w2}$) will lead to mixed-mode-loading instead of pure mode I crack opening. Thus, the determined strength values are not to be compared to symmetrical specimens and are reflecting variant failure modes of the bond interfaces.