INTERNATIONAL ISO/IEC
STANDARD 13211-1

First edition
1995-06-01

Information technology — Programming
languages — Prolog —

Part 1:
General core

Technologies-de'tinformation — Langages de programmation —
Prolog =«

Partie 1: Noyau général

SN
Reference number
S * ISO/IEC 13211-1:1995(E)

ISO/IEC 13211-1 : 1995(E)

Contents Page
Foreword viii
Introduction ix
1 SCOPEe. . . .o 1
L1 NOES . . ot e e e 1

2 Normative references 1
3 Definitions 0 CLL GO L ALY S R AR 2
4 Symbols and abbreviations | SLCIILEAL L LS. DL, &4 10
4.1 NOtAtON . . . oo et 10
4.1.1 Basic mathematical types SOdHE 137111995 - « - 10

4.1.2 Mathematical-and,8et0perators o ko/standards/sist/ Q814 1! 10

4.1.3 Other functions2 091 bO5/Ee-icc- 1321 1]~ 10 10

4.2 Abstract data type: stack 11
4.3 Abstract data type: mapping 11

5 Compliance 11
5.1 Prolog ProCessOrt 11
52 Prolog teXt 12
53 Prologgoal 12
5.4 Documentation.vv et 12
5.5 EXIENSIONS . . o v o vt e et e e 12
551 Syntax 12

5.5.2 Predefined operators 12

5.5.3 Character-conversion mapping. 12

554 TYPES. . oot 12

555 DIirectives oo oo 13

5.5.6 Sideeffects 13

5.5.7 Control constructs 13

558 Flags 13

5.59 Built-in predicates 13

© ISO/IEC 1995

All rights reserved. Unless otherwise specified, no part of this publication may be

reproduced or utilized in any form or by any means, electronic or mechanical, including

photocopying and microfilm, without permission in writing from the publisher.
ISO/IEC Copyright Office Case Postale 56 ¢ CH-1211 Gengve 20 e Switzerland

Printed in Switzerland

ii

© ISO/IEC 1995

ISO/IEC 13211-1 : 1995(E)

5.5.10 Evaluable functors. 13
5,511 Reserved atoms.t 13
6 SYntax 13
6.1 Notation 13
6.1.1 Backus Naur Form 13
6.1.2 Abstract term Syntax, 14
6.2 Prologtextanddata............... 15
6.2.1 Prologtext 15
622 Prologdata............ 15
6.3 Termsot 15
6.3.1 AtomiC terms 16
6.3.2 Variables 16
6.3.3 Compound terms — functional notation 16
6.3.4 Compound terms — operator notation. 17
6.3.5 Compound terms — list notation 19
6.3.6 Compound terms — curly bracketed term 20
6.3.7 Terms - double quoted list notation 20
6.4 Tokens 20
64.1 Layouttext.............. ..., 21
642 Names 21
6.43 Variables 23
64.4 Integer numbers 23
6:4.5) /Floating point<numbers 1, VW L oo 23
6.4.6 Double quoted lists 24
6/4.7 |Back.quotedstrings L. 24
64.8 Othertokens........... 24
6.5 |Processor,charactensset 24
6:5.1..,, Graphic, characters 0 0e. 4309 Guador « v o v v v v v ee e 25
6.5.2 5. Alphanumeric characters 25
6.53 Solocharacters 25
6.54 Layout characters 25
6.5.5 Metacharacters. 26
6.6 Collating sequUence 26
7 Language concepts and semantics 26
T1 OTYPES « o 27
711 Variable 27
702 Integer......... 27
7.1.3 Floating point 28
714 AOIM . ..o 29
71.5 Compoundterm 29
71.6 Relatedterms 29
72 Termorder 30
721 Variable 31
7.2.2 Floating point 31
723 Integer 31
724 AtOM 31
725 Compound 31
7.3 Unification 31
7.3.1 The mathematical definition 31
7.3.2 Herbrand algorithm 31
7.3.3 Subject to occurs-check (STO) and not subject to occurs-
check (NSTO) i 33
7.3.4 Normal unification in Prolog 33
7.4 Prolog text 33
7.4.1 Undefined features 34

iii

ISO/IEC 13211-1 : 1995(E)

iv

742 DIirectives oot 34
743 Clausesot 35
7.5 Databaseo 36
7.5.1 Preparing a Prolog text for execution 36
7.5.2 Static and dynamic procedures 36
7.5.3 Private and public procedures 36
7.54 A logical database update 37
7.6 Converting a term to a clause, and a clause to a term 37
7.6.1 Converting a term to the head of a clause 37
7.6.2 Converting a term to the body of a clause. 37
7.6.3 Converting the head of a clause toaterm........... 37
7.6.4 Converting the body of a clause to a term. 38
7.7 Executing a Prolog goal 38
771 ExXecution 38
7.7.2 Data types for the execution model 38
7.7.3 Initialization 39
774 A goalsucceeds 39
775 Awgoalfails 39
7.7.6 Re-executinga goal................ 39
7.7.7 Selecting a clause for execution 40
7.7.8 Backtracking. 40
779 Side effects 40
7.7.10 Executing a user-defined procedure 40
7.7.11 Executing a userldefined procedure with noimore clause§<, (42
7.7.12 Executing a built-in predicate 42
7.8 Control constructs 2L aRRRLIELl LD LA 43
781 true/O. 43
7.82 fail/O ISOUEC321E-:1995 43
7.8.3 call/l Lipsd/standards.iteh ailcatalos standards/sist/SSbH 44
784 YO —cutc8l001dIb05 Eed0c- 1320 11 45
785 ()2 —conjunction 47
7.8.6 (/2 —disjunction 47
787 (>)2—ifthen...... 49
788 ()2 —ifthen-else............... 50
789 catch/3 51
7.8.10 throw/l 53
7.9 Evaluating an expression.oottiennn.... 54
7.9.1 Description 54
792 EBITOTS .. oot 54
7.10 Input/output. 54
7.10.1 Sources and sinks 54
T.10.2 Streamsot e 55
7.10.3 Read-options list. 58
7.10.4 Write-options list 58
7.10.5 Writing a term 59
TA1 Flags 60
7.11.1 Flags defining integer type I 60
7112 Other flags 61
T2 BITOTS . o o o o e e e e e e e 6l
7.12.1 The effect of an error 62
7.12.2 Error classification 62
Built-in predicates oL 63
8.1 The format of built-in predicate definitions 63
8.1.1 Description oot 63
8.1.2 Template and modes 64
8.1.3 EITOIS .. ot ittt e 64

© ISO/IEC 1995

© ISO/IEC 1995

8.2

8.3

84

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

ISO/IEC 13211-1 : 1995(E)

814 Examples
8.1.5 Bootstrapped built-in predicates
Term unification.
821 (=)/2-Prologunify
8.2.2 unify_with_occurs_check/2 —unify
8.2.3 (\=)/2 - not Prolog unifiable
Type testing
831 var/l ...
8.3.2 atom/l
833 integer/1....
834 float/l
83.5 atomic/l........
83.6 compound/l1
83.7 nonvar/l
83.8 number/l
Term comparison
84.1 (@=<)/2 — term less than or equal, (==)/2 — term identical,

(\==)/2 — term not identical, (@<)/2 — term less than,

(@>)/2 — term greater than, (@>=)/2 — term greater than

orequal
Term creation and decomposition.
8.5.1 functor/3
8.5.2 arg/3 L
853 =02 ~univie DL Y L Y
8.5.4 cOpyterm/2,
Arithmetic évaluation.<..).
8.6.1 (is)/2 — evaluate expression
Avithmietio comparison
8171 1(=:=)/2+ arithmetic equal; (=\z)/2 — arithmetic not equal,

(<)/2- =oarithmetic less than, (=<)/2 - arithmetic less

than or equal, (>)/2 — arithmetic greater than, (>=)/2 —

arithmetic greater than or equal
Clause retrieval and information
8.8.1 clause/2
8.8.2 currentpredicate/l
Clause creation and destruction
8.9.1 asserta/l
8.9.2 assertz/l
8.9.3 retract/1
8.9.4 abolish/1
All SOlUtiONS o
8.10.1 findall/3
8.10.2 bagof/3
8.10.3 setof/3
Stream selection and control L L
8.11.1 currentinput/l
8.11.2 currentoutput/L..
8.11.3 setinput/1
8.114 setoutput/l
8.11.5 open/d,open/3
8.11.6 close/2, close/l
8.11.7 flush_output/l, flush_output/O
8.11.8 stream_property/2, at_end_of stream/0, at_end_of_stream/1 .
8.11.9 set_stream_position/2
Character input/output
8.12.1 get_char/2, get_char/l, get_code/l, getcode/2

8.12.2 peek_char/2, peek_char/l, peek_code/l, peek_code/2

ISO/IEC 13211-1 : 1995(E)

vi

8.12.3 put_char/2, put_char/l, put_code/l, put_code/2, nl/0, nl/1 . 94

8.13 Byte input/output 95
8.13.1 getbyte/2, getbyte/l1 95
8.13.2 peek_byte/2, peek.byte/1 96
8.13.3 putbyte/2, putbyte/l 97

8.14 Term input/output.ttt 98
8.14.1 read_term/3, read_term/2, read/1, read/2 98
8.14.2 write_term/3, write_term/2, write/1, write/2, writeq/1,

writeq/2, write_canonical/l, write_canonical/2 99
8143 Op/3. . o 101
8.14.4 currentOp/3 102
8.14.5 char_conversion/2, 103
8.14.6 current_char_conversion/2 103

8.15 Logic and control 104
8.15.1 (\+)/1 —not provable 104
8.15.2 once/l 105
8.15.3 repeat/O 105

8.16 AtomicC term Processingeue oot 105
8.16.1 atom_length/2 o 106
8.16.2 atom_concat/3 106
8.16.3 sub_atom/5 107
8.16.4 atom_chars/2 108
8.16.5 atom_COdES/2 . wip o1« comirm B ke T T 109
8.16.6 char_code/2. .. 1.0 L Li b0 LWL RSN LK 109
8.16.7 numberchars/2 ¥.. .. F. 0. . 110
8.16.8 number_codes/2. AL RERREAEELE BT DDA 111

8.17 Implementation defined hooks 112
8.17.1 set_prologflag/2 [oOUdCC IS 0-1ilD95 . 112
8.17.2 current_prologiflag/2andarcs.ich.avcalaloy/standardsisst/oshle 112
8.17.3 halt/O................coclOldlDOSso-tecs 32011 193
8.17.4 halt/1 113

Evaluable functors 114

9.1 The simple arithmetic functors 114
9.1.1 Evaluable functors and operations 114
9.1.2 Exceptional values. 114
9.1.3 Integer operations and axioms 114
9.1.4 Floating point operations and axioms 115
9.1.5 Mixed mode operations and axioms 116
9.1.6 Type conversion operations 117
9.1.7 Examples 117

9.2 The format of other evaluable functor definitions 119
9.2.1 DesCription ov vt 119
9.2.2 Template and modes, 119
923 EBITOTS .. .ot 119
924 Examples 119

9.3 Other arithmetic functors 119
9.3.1 (FF)/2 —POWEr . .. oo 119
9.3.2 sin/l ... 120
933 oS/l .. 120
934 atan/l 120
935 exp/l ... 121
9.3.6 log/l 121
937 sqrt/l ... 122

9.4 Bitwise functors. 122
94.1 (>>)/2 - bitwise right shift. 122
942 (<<)/2 - bitwise left shift 122

© ISO/IEC 1995

© ISO/IEC 1995

Annex

A Formal semantics
Introduction
A.1.1 Specification language: syntax
A.1.2 Specification language: semantics
A.1.3 Comments in the formal specification
A.1.4 About the style of the Formal Specification
A1S References

Al

A2

A3

A4

A5

ISO/IEC 13211-1 : 1995(E)

943 (/\)2-bitwiseand
944 (\/)2 —Dbitwise or
94.5 (\)/1 — bitwise complement

An informal description,
A.2.1 Search-tree for “pure” Prolog
A.2.2 Search tree for “pure” Prolog with cut
A.2.3 Search-tree for kernel Prolog
A.2.4 Database and database update view................
A.2.,5 Exception handling
A2.6 Environments
A.2.7 The semantics of a standard program
A.2.8 Getting acquainted with the formal specification.
A.2.9 Built-in predicateso
A.2.10"Relationships with the linformal semantics of 7.7 and 7.8
Data Structures . . .o . . .oy v v e
A.3.1 " Abstract databases and terms
A.3.2 Predicate indicator. L
ABBC Forest L1905 . .o o
A.3.41nAbstract/lists; atoms;Ocharacterscand lists
Al3/5/-Substitutions|andounification L
A3.6 Arithmetic
A.3.7 Difference lists and environments
A.3.8 Built-in predicates and packets
A39 Inputandoutput............
The Formal Semantics
Ad41 Thekernel
Control constructs and built-in predicates
A.5.1 Controlconstructs o
A.5.2 Term unification
AS53 Typetesting
A5.4 Term COMPAriSONov vttt
A.5.5 Term creation and decomposition
A.5.6 Arithmetic evaluation - (is)/2
A.5.7 Arithmetic comparison
A.5.8 Clause retrieval and information
A.5.9 Clause creation and destruction
A5.10 All solutions
A.5.11 Stream selection and control
A.5.12 Character input/output
A.5.13 Byte input/foutput
A.5.14 Term input/output
A.5.15 Logicand control L.
A.5.16 Atomic term processing
A.5.17 Implementation defined hooks

vii

ISO/IEC 13211-1 : 1995(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate
in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields
of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and’ IEC have established a joint
technical committee ISO/IEC JTC 1. Draft International .Standards, adopted
by the joint technical committee are circulated fo national bodiés for voting.
Publication as an International Standard requires approval by at least 75% of
the national bodies casting a vote.

International Standard ISO/IEC 13211 was prepared by Joint Techinical Committee
ISO/IEC JTIC 1, Information technology, Subcommittee SC 22, Programming

languages, their environments and system software interfaces.

Annex A of this part of ISO/IEC 13211 is for information only.

viii

© ISO/IEC 1995

|

© ISO/IEC 1995

ISO/IEC 13211-1 : 1995(E)

Introduction

This is the first International Standard for Prolog, Part 1 (General Core). It was
produced on 20 April 1995.

There is no other International Standard for Prolog.

Prolog (Programming in Logic) combines the concepts of logical and algorithmic
programming, and is recognized not just as an important tool in AI (Artificial
Intelligence) and expert systems, but as a general purpose high-level programming
language with-some-unique, properties;

The, language ,originates from workyin the early 1970s by Robert A. Kowalski
while at Edinburgh University (and ever since at Imperial College, London) and
Alain Colmerauer at the University of Aix-Marseilles in France. Their efforts
led in 1972 to-the-use of formal logic as the basis for a programming language.
Kowalski's ‘research “ provided ‘the - theoretical “framework, while Colmerauer’s
gave“rise' to ‘the 'programming’ language Prolog. Colmerauer and his team then
built the first interpreter, and David Warren at the AI Department, University of
Edinburgh, produced the first compiler.

The crucial features of Prolog are unification and backtracking. Unification
shows how two arbitrary structures can be made equal, and Prolog processors
employ a search strategy which tries to find a solution to a problem by
backtracking to other paths if any one particular search comes to a dead end.

Prolog is good for windowing and multimedia because of the ease of building
complex data structures dynamically, and also because the concept of backing
out of an operation is built into the language.

Prolog is taught in more UK university computing degrees than any other
programming language.

This part of ISO/IEC 13211 defines the general core features of Prolog, and
part 2 will define modules.

ix

iTeh STANDARD PREVIEW
TSEARARTasIeeh AT

ISO/MEC 13211-1:1995
https//standards.iteh.ai/catalog/standards/sist/88bf4 1 cb-9e9e-43d2-8eed-
¢8c1091d1b05/iso-iec-13211-1-1995

INTERNATIONAL STANDARD © ISO/IEC

ISO/IEC 13211-1:1995(E)

Information technology — Programming languages — Prolog —

Part 1:
General core

1 Scope

ISO/IEC 13211 is designed to promote the applicability
and portability of Prolog text and data among a variety of
data processing systems.

This part of ISO/IEC 13211 specifies:
a) The representation of Prolog text,
b) The syntax and constraints of the Prolog language,
¢) The semantic rules for interpreting Prolog text,

d) The representation of input data to-be processed by
Prolog,

e) The representation of output produced by Prolog,
and

f) The restrictions and limits imposed.on ja,conforming
Prolog processor.

NOTE — This part of ISO/IEC 13211 does not specify:

a) the size or complexity of Prolog text that will exceed the
capacity of any specific data processing system or language
processor, or the actions to be taken when the corresponding
limits are exceeded;

b) the minimal requirements of a data processing system
that is capable of supporting an implementation of a Prolog
processor;

c) the methods of activating the Prolog processor or the
set of commands used to control the environment in which
Prolog text is prepared for execution and executed;

d) the mechanisms by which Prolog text is prepared for
use by a data processing system;

e) the typographical representation of Prolog text published
for human reading;

f) the user environment (top level loop, debugger, library
system, editor, compiler etc.) of a Prolog processor.

This part of ISO/IEC 13211 is intended for use by implementors
and knowledgeable programmers, and is not a tutorial.

1.1 Notes

Notes in this part of ISO/IEC 13211 have no effect on the
language, Prolog text or Prolog processors that are defined
as conforming to this part of ISO/IEC 13211. Reasons for
including a note include:

a) Cross references to other clauses and subclauses of
this part of ISO/IEC 13211 in order to help readers find
their way around,

b) Warnings when a built-in predicate as defined in
this part of ISO/IEC 13211 has a different meaning in
some existing implementations.

2 Normative references

The following standards contain provisions which, through
reference in this text, constitute provisions of this part of
ISO/IEC 13211. At the time of publication, the editions
indicated were_valid. 2All standards are subject to revision,
and parties to agreements based on this part of ISO/IEC
13211 are encouraged to investigate the possibility of
applying the most recent editions of the standards listed
below. Members of IEC and ISO maintain registers of
currently valid International Standards.

ISO/IEC 646 : 1991, Information technology — I1SO 7-bit
coded character set for information interchange.

ISO 2382-15 : 1985, Data processing — Vocabulary —
Part 15: Programming languages.

ISO 8859-1 : 1987, Information technology — 8-bit
single-byte coded graphic character sets — Part 1: Latin
alphabet No. 1.

ISO/IEC 9899 : 1990, Programming languages — C.

ISO/IEC TR 10034 : 1990, Guidelines for the prepara-
tion of conformity clauses in programming language
standards.

ISO/IEC 10967-1 : 1994, Information technology — Lan-
guage independent arithmetic — Part 1: Integer and
floating point arithmetic.

BS 6154 : 1981, Method of defining — Syntactic meta-
language.

ISO/IEC 13211-1 : 1995(E)

3 Definitions

This terminology for Prolog has a format modelled on that
of ISO 2382.

An entry consists of a phrase (in bold type) being defined,
followed by its definition. Words and phrases defined in
the glossary are printed in ifalics when they are used in
other entries. When a definition contains two words or
phrases defined in separate entries directly following each
other (or separated only by a punctuation sign), * (an
asterisk) separates them.

Words and phrases not defined in this glossary are assumed
to have the meaning given in ISO 2382-15; if they do not
appear in ISO 2382-15, then they are assumed to have
their usual meaning.

For the purposes of ISO/IEC 13211, the following defini-
tions apply:
3.1 A: The set of atoms (see 6.1.2 b, 7.1.4).

3.2 activation: The process of executing an dctivaror:

3.3 activator: The result of preparing a goal for exe-
cution (see 7.7.3).

3.4 algorithm, Herbrand: See 3.85 — Herbrand al-
gorithm.

3.5 alias: An atom associated with an open stream (see
7.10.2.2).

The standard input stream has the alias user_input, and
the standard output stream has the alias user_output (see
7.10.2.3).

NOTE — A stream can have many aliases, but an atom can be
the alias of at most one stream.

3.6 anonymous variable: A variable (represented in a
term or Prolog text by) which differs from every other
variable (and anonymous variable) (see 6.1.2, 6.4.3).

3.7 argument: A term which is associated with a
predication or compound term.

3.8 arithmetic data type: A data type whose values
are members of Z or R.

2

© ISO/IEC 1995

3.9 arity: The number of arguments of a compound
term. Syntactically, a non-negative integer associated with
a functor or predicate.

3.10 assert, to: To assert a clause is to add it to the
user-defined procedure in the database defined by the
predicate of that clause.

NOTE — It is unnecessary for the user-defined procedure to

already exist.

3.11 associativity (of an operator): Property of being
non-associative, right-associative, or left-associative (see
6.3.4, table 4).

3.12 atom: A basic object, denoted by an identifier
(see 6.1.2 b, 7.1.4).

3.13 atom, null: See 3.117 — null atom.
3.14)atom, one-char:Seé 3.119 — one-char atom.
3.15 atomic term: An atom or a number.

8.16 axiom: cAorule ssatisfied | by an operation and all
values3of the data type to which the operation belongs.

3.17 backtrack, to: To return to the choicepoint of the
current goal in order to attempt to re-execute it (see 7.7.8).

3.18 bias, exponent: See 3.68 — exponent bias.

3.19 body: A goal, distinguished by its context as part
of a rule (see 3.154).

3.20 bootstrapped (built-in predicate): Defined as a
special case of a more general built-in predicate (see
8.1.5).

3.21 built-in predicate: A procedure whose execution
is implemented by the processor (see 8).

3.22 byte: An integer in the range [0..255] (see 7.1.2.1).
3.23 (C: The set of characters (see 7.1.4.1).

3.24 callable term: An atom or a compound term.

© ISO/IEC 1995

3.25 (CC: The set of character codes (see 7.1.2.2).

3.26 character: A member of C' — an implementation
defined character set (see 6.5, 7.1.4.1).

3.27 character, quoted: See 3.144 — quoted charac-
ter.

3.28 character, unquoted: See 3.194 — unquoted
character.

3.29 character-conversion mapping: A mapping on
the set of characters, C, which specifies that, in some
Prolog text units and sources, some characters are intended
to be equivalent to other characters, and converted to those
characters (see 3.46, 7.4.2.5, 8.14.5).

3.30 choicepoint: A state during execution from which
a goal can be executed in morg than|ené.way.

3.31 class (of an operator): The class of an operator
defines whether it is a prefix, infix, or postfix operator
(see 6.3.4).

3.32 clause: A fact or a rule. It has two parts: a head,
and a body.

NOTE — In ISO/IEC International Standards “clause” has the
meaning: one of the numbered paragraphs of a standard. In
this part of ISO/IEC 13211, the context distinguishes the two
meanings.

3.33 clause-term: A read-term T. in Prolog text where
T does not have principal functor (:-)/1 (see 6.2.1.2).

3.34 collating sequence: An implementation defined or-
dering defined on the set C' of characters (see 6.6).

3.35 complete database: The set of procedures with
respect to which execution is performed (see 7.5).

3.36 composition (of two substitutions): The mapping
resulting from the application of the first substitution
followed by the application of the second. Composition
of the substitutions oy and o, is denoted o o 65. When
the composition acts on a term t, it is denoted by to0,
with the meaning ((to1)02).

ISO/IEC 13211-1 : 1995(E)

3.37 compound term: A functor of arity N, N positive,
together with a sequence of N arguments (see 6.1.2 e,
7.1.5).

3.38 configuration: Host and target computers, any op-
erating system(s) and software used to operate a processor.

3.39 conforming processor: A processor which con-
forms to all the compliance clauses (see 5.1) for processors
in this part of ISO/IEC 13211.

3.40 conforming Prolog data: Sequences of characters
and bytes that conform to all the compliance clauses for
Prolog data in this part of ISO/IEC 13211 (see 5, 6.2.2).

3.41 conforming Prolog text: A sequence of characters
that conforms to all the compliance clauses for Prolog text
in this part of ISO/IEC 13211 (see 5, 6.2).

3.42 " construct, control: See 3.45 — control construct.

3.43 constructor, list: See 3.100 — list constructor.

3.44 | c¢ontain, to: A term T1 contains another term T2 if
either T1 and T2 are identical terms, or T1 is a compound
term, one of whose arguments contains T2.

3.45 control construct: A procedure whose definition
is part of the Prolog processor (see 7.8).

3.46 Convc: The character-conversion mapping on C
(the set of characters) which specifies that, in some Prolog
text units and sources, some characters are converted to
other characters (see 3.29, 7.4.2.5, 8.14.5).

The initial value of Convc shall be identity_mappingc.

NOTES

1 A directive or goal char_conversion(In,
out) (7.4.2.5, 8.14.5) replaces Conve by
update_mappingc(In, out, Convc).

2 Any unquoted character C that is part of a read-term which
is input by read_term/3 (8.14.1) or as Prolog text is replaced
by apply_mappingc(C, Convc).

3 Convc can be inspected by calling
current_char_conversion/2 (8.14.6).

ISO/IEC 13211-1 : 1995(E)

4 The rationale for providing this facility is because some
extended character sets (for example, Japanese JIS character
sets) are used with the basic character set and contain the
characters equivalent to those in the basic character set with
different encoding. In such cases, users will often wish the
meaning of characters in Prolog data and Prolog text to be the
same regardless of the encoding.

3.47 convert (from type A to type B): An operation
whose signature is

converts_,p : A — B U {error}
which converts a value of rype A to type B. It shall be
an error if the conversion cannot be made.

For example, see converting a term to a clause and vice
versa (7.6), character-conversion (3.29, 7.4.2.5, 8.14.5),
and converting a floating point value to an integer value
and vice versa (9.1.6).

3.48 copy, renamed (of a term): See 3.150 — re-
named copy (of a term).

3.49 C(CT: The set of compound-terms (see"6.1.2 ¢,
7.1.5).

3.50 cut: A control construct whose effect is to remove
all choicepoints back to a deeper,execution|state -defined
by its cutparent (see 7.7.2, 7.8.4).

3.51 data, conforming Prolog: See 3.40 — conform-
ing Prolog data.

3.52 database: The set of user-defined procedures
which currently exist during execution (see 7.5).

3.53 database, complete: See 3.35 — complete
database.

3.54 data type: A set of values and a set of operations
that manipulate those values.

3.55 data type, arithmetic: See 3.8 — arithmetic
data type.

3.56 denormalized value: A floating point value of
type F' providing less than the full precision allowed by
F (see Fp, 7.1.3).

3.57 directive: A ferm D which affects the meaning of
Prolog text (see 7.4.2), and is denoted in that Prolog text
by a directive-term :- (D) .

4

© ISO/IEC 1995

3.58 directive-term: A read-term T. in Prolog text
where T has principal functor (:-)/1 (see 6.2.1.1).

3.59 dynamic (of a procedure): A dynamic procedure
is one whose clauses can be inspected or altered during
execution, for example by asserting or retracting * clauses
(see 7.5.2).

3.60 effect, side: See 3.157 — side effect.

3.61 element (of a list): An element of a non-empty
list is either the head of the list or an element of the tail
of the list. The empty list has no elements.

3.62 empty list: The atom [] (nil).

3.63 error: A special circumstance which causes the
normal process-of execution to be interrupted (see 7.12).

3.64 " ‘evaluable functor: The principal functor of an
expression (see 7.9, 9).

3.653 evaluate: To reduce an expression to its value.
(see 7.9, 8.6.1, 9).

3.66 exceptional value: A non-numeric value of an
expression: float_overflow, int_overflow, underflow,
zero_divisor, or undefined (see 7.9).

NOTE — It is an evaluation.error (E) when the value
of an expression is an exceptional value.

3.67 execution (verb: to execute): The process by
which a Prolog processor tries to satisfy a goal (see 7.7.1).

3.68 exponent bias: A number added to the exponent
of a floating point number, usually to convert the exponent
to an unsigned integer.

3.69 expression: An atomic term or a compound term
which may be evaluated to produce a value (see 8.6.1, 9).

3.70 extension: A facility provided by the processor
that is not specified in this part of ISO/IEC 13211 but that
would not cause any ambiguity or contradiction if added
to this part of ISO/IEC 13211.

© ISO/IEC 1995

3.71 F: The set of floating point values (see 6.1.2 d,
7.1.3).

3.72 fact: A clause whose body is the goal true.

NOTE — A fact can be represented in Prolog text by a term
whose principal functor is neither (:-)/1 nor (:-)/2.

3.73 fail, to: Execution of a goal fails if it is not
satisfied.

3.74 file name: An implementation defined * ground
term which identifies to the processor a file which will be
used for input/output during the execution of the Prolog
text.

3.75 flag: An atom which is associated with an imple-
mentation defined or user-defined value (see 7.11).

3.76 floating point value:! "A“member" of ‘the set /A
(see 6.1.2 d, 7.1.3).

3.77 functor: An identifier together with an aripy.

3.78 functor name: The identifier of a functor.

3.79 function, rounding: See 3.153 — rounding func-
tion.

3.80 functor, principal: See 3.134 — principal func-
tor.

3.81 goal: A predication which is to be executed (see
body, query, and 7.7.3).

3.82 ground term: An atomic term or a compound term
whose arguments are all ground. A term is ground with
respect to a substitution if application of the substitution
yields a ground term.

3.83 head (of a list): The first argument of a non-empty
list.

3.84 head (of a rule): A predication, distinguished by
its context.

ISO/MEC 13211-1 : 1995(E)

3.85 Herbrand algorithm: An algorithm which com-
putes the most general unifier MGU of a set of equations
(see 7.3.2).

3.86 I: The set of integers (see 6.1.2 ¢, 7.1.2).

3.87 identical terms: Two terms are identical if they
have the same abstract syntax (see 6.1.2).

3.88 identifier: A basic unstructured object used to
denote an atom, functor name or predicate name.

3.89 iff: If and only if.

3.90 implementation defined: Defined partly by this
part of ISO/IEC 13211, and partly by the documentation
accompanying a processor (see 5).

3.91 implementation dependent: An implementation
dependent feature is dependent on the processor.

NOTE — This part of ISO/IEC 13211 does not require
an_ implementation dependent feature to be defined in the
accompanying processor documentation.

3.92 implementation specific: Undefined by this part of
ISO/IEC 13211 but supported by a conforming processor.

NOTE — This part of ISO/IEC 13211 does not require an
implementation specific feature to be supported by a conforming
processor, but it preserves the syntax and semantics of a strictly
conforming Prolog text which does not use it, for example,
defining a term order on variables, or defining unification for
terms which are STO (3.165).

3.93 indicator, predicate: See 3.131 — predicate in-
dicator.

3.94 input/output mode: An atom which represents an
attribute of a stream. A processor shall support the
input/output modes: read, write, append (see 8.11.5,
7.10.1.1).

3.95 instance (of a ferm): The result of applying a
substitution to the term.

If t is a term and o a substitution, the instance of ¢ by ¢
is denoted to.

	�<àŁµ…ñÏ†ê⁄€¨÷M™�mPtÊª»sØf�ãvù�K½ÆyÊ�wm*Ö)À˚i+˘45Ü3ï=4wËõ·¼ýÕÍé‰Z��
’„⁄)j–¢¦Ø-¨dùÑ_¨@©

