Utility connections in port – Part 1: High voltage shore connection (HVSC) systems – General requirements
Utility connections in port – Part 1: High voltage shore connection (HVSC) systems – General requirements
CONTENTS

FOREWORD ... 6

INTRODUCTION ... 9

1 Scope .. 10
2 Normative references .. 10
3 Terms and definitions .. 12
4 General requirements .. 13
 4.1 System description .. 13
 4.2 Distribution system ... 14
 4.2.1 General .. 14
 4.2.2 Equipotential bonding .. 14
 4.3 Compatibility assessment before connection .. 15
 4.4 HVSC system design and operation .. 15
 4.4.1 System design ... 15
 4.4.2 System operation .. 15
 4.5 Personnel safety ... 16
6 Design requirements .. 16
 4.6.1 General .. 16
6.2 System component requirements .. 22
 6.2.1 Circuit-breaker, disconnector and earthing switch ... 22
 6.2.2 Transformer .. 22
 6.2.3 Neutral earthing resistor .. 23
 6.2.4 Equipment-earthing conductor bonding ... 23
 6.3 Shore-to-ship electrical protection system .. 23
6.4 HV interlocking .. 24
 6.4.1 General ... 24
 6.4.2 Operating of the high-voltage (HV) circuit breakers, disconnectors and earthing switches .. 24
6.5 Shore connection converter equipment ... 25
 6.5.1 General .. 25
6.5.2 Degree of protection .. 25
6.5.3 Cooling .. 25
6.5.4 Protection ... 26
7 Ship-to-shore connection and interface equipment ... 26
 7.1 General .. 26
7.2 Cable management system
 7.2.1 General
 7.2.2 Monitoring of cable mechanical tension
 7.2.3 Monitoring of the cable length
 7.2.4 Connectors protection
 7.2.5 Equipotential bond monitoring
 7.2.6 Slip ring units
7.3 Connectors
 7.3.1 General
 7.3.2 Pilot contacts
 7.3.3 Earth contact
 7.3.4 Fibre-optic connection
7.4 Interlocking of earthing switches
7.5 Ship-to-shore connection cable
7.6 Control and monitoring cable
7.7 Storage
7.8 Data communication
8 Ship requirements
 8.1 General
 8.2 Ship electrical distribution system protection
 8.2.1 Short-circuit protection
 8.2.2 Earth fault protection, monitoring and alarm
 8.3 Shore connection switchboard
 8.3.1 General
 8.3.2 Circuit-breaker, disconnecter and earthing switch
 8.3.3 Instrumentation and protection
 8.4 Onboard transformer
 8.5 Onboard receiving switchboard connection point
 8.5.1 General
 8.5.2 Circuit-breaker and earthing switch
 8.5.3 Instrumentation
 8.5.4 Protection
 8.5.5 Operation of the circuit-breaker
 8.6 Ship power restoration
9 HVSC system control and monitoring
 9.1 General
 9.2 Load transfer via blackout
 9.3 Load transfer via automatic synchronization
 9.3.1 General
 9.3.2 Protection
10 Verification and testing
 10.1 General
 10.2 Initial tests of shore side installation
 10.2.1 General
 10.2.2 Tests
 10.3 Initial tests of ship-side installation
 10.3.1 General
 10.3.2 Tests
 10.4 Tests at the first call at a shore supply point
10.4.1 General .. 38
10.4.2 Tests ... 38
11 Periodic tests and maintenance .. 39
11.1 General .. 39
11.2 Tests at repeated calls of a shore supply point 39
11.2.1 General ... 39
11.2.2 Verification ... 39
11.3 Earthing bonding connections ... 39
12 Documentation .. 40
12.1 General .. 40
12.2 System description .. 40
Annex A (informative) Ship-to-shore connection cable 41
A.1 Rated voltage .. 41
A.2 General design ... 41
A.2.1 General ... 41
A.2.2 Conductors ... 41
A.2.3 Insulation of power cores and neutral core 41
A.2.4 Screening .. 42
A.2.5 Earth conductors .. 42
A.2.6 Pilot element with rated voltage $U_{0}/U_{m} = 150/250/300$ V 42
A.2.7 Optical fibres ... 43
A.2.8 Cabling .. 43
A.2.9 Separator tape ... 43
A.2.10 Outer sheath .. 43
A.2.11 Markings .. 43
A.3 Tests on complete cables ... 44
Annex B (normative) Additional requirements for Roll-on Roll-off (Ro-Ro) cargo ships and Ro-Ro passenger ships 46
B.1 General ... 46
Annex C (normative) Additional requirements for cruise ships 51
C.1 General ... 51
C.6 Shore side installation ... 56
Annex D (normative) Additional requirements of container ships 59
D.1 General ... 59
Annex E (informative) Additional requirements of liquefied natural gas carriers (LNGC) 63
E.1 General ... 63
Annex F (informative) Additional requirements for tankers 69
F.1 General ... 69
Bibliography ... 72

Figure 1 – Block diagram of a typical described HVSC system arrangement 14
Figure 2 – Phase sequences ... 20
Figure 3 – Single harmonic distortion limits 21
Figure 4 – Fibre-optic socket outlet ... 29
Figure 5 – Fibre-optic plug ... 30
Figure A.1 – Bending test arrangement 45
Figure B.1 – General system diagram .. 47
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation.

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in this work. International Electrotechnical Commission (IEC) and ISO collaborate closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

IEEE Standards documents are developed under IEEE Societies and Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary. IEEE documents are made available for use subject to important notices and legal disclaimers (see http://standards.ieee.org/IPR/disclaimers.html for more information).

IEC collaborates closely with ISO and IEEE in accordance with conditions determined by agreement between the organizations. This Triple Logo International Standard was jointly developed by the IEC, ISO and IEEE under the terms of that agreement.

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. In the ISO, Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE Standard document is given by the IEEE Standards Association (IEEE-SA) Standards Board.

3) IEC/ISO/IEEE Publications have the form of recommendations for international use and are accepted by IEC National Committees/ISO member bodies/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC/ISO/IEEE Publications is accurate, IEC, ISO or IEEE cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications (including IEC/ISO/IEEE Publications) transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC/ISO/IEEE Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC, ISO and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC, ISO and IEEE are not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC, ISO or IEEE or their directors, employees, servants or agents including individual experts and members of technical committees and IEC National Committees and ISO member bodies, or volunteers of IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board, for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/ISO/IEEE Publication or any other IEC, ISO or IEEE Publications.
8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/ISO/IEEE Publication may require use of material covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. IEC, ISO or IEEE shall not be held responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from ISO or the IEEE Standards Association.

International Standard IEC/IEEE 80005-1 has been prepared by IEC technical committee 18: Electrical installations of ships and of mobile and fixed offshore units, in cooperation with:

- IEC subcommittee 23H: Plugs, socket-outlets and couplers for industrial and similar applications, and for Electric Vehicles, of IEC technical committee 23: Electrical accessories;
- ISO technical committee 8: Ships and marine technology, subcommittee 3: Piping and machinery;
- and IEEE IAS Petroleum and Chemical Industry Committee (PCIC) of the Industry Applications Society of the IEEE.

This document is published as a triple logo (IEC, ISO and IEEE) standard.

This second edition cancels and replaces the first edition published in 2012. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) modification of 4.1, Figure 1:
 - transformer on ship is optional, earthing switches on ship removed;

b) modification of 4.2.2 and new item 11.3:
 - alternative procedure of periodic testing added;

c) modification of 4.9:
 - minimum current value in the safety circuits shall be 50 mA;
 - opening of safety loop shall cause the automatic opening of ship and shore HVSC circuit breakers in a maximum time of 200 ms;

d) modification of 5.2:
 - added Figure on harmonic contents;

e) modification of 6.2.3:
 - earthing transformer with resistor can be used also on the secondary side;
 - neutral earthing resistor rating in amperes shall be minimum 25 A, 5 s;

f) modification of all annexes:
 - the safety circuits shall be mandatory;

g) modification of A.2.1:
 - a metallic shield shall be installed at least on the power cores or common on pilot wires;

h) modification of B.7.2.1:
 - new safety circuit introduced: single line diagram and description;

i) modification of C.4.1:
– SLD for cruise ships was updated, also the safety circuits to be coherent with main body, IEC symbols and introduced more details about the control socket-outlets and plugs manufacturer type;

j) modification of C.7.3.1:
 – shore power connector pin assignment is updated;
 – all cruise ships shall use 4 cables in all cases;

k) added D.6.1:
 – the supply point on shore can be fixed or movable;

l) modification of D.7.3.2:
 – the voltage used in the pilot circuit for container ships shall be less than 60 V DC or 25 V AC.

m) added D.8.6 and D.9.3.1:
 – automatic restart and synchronization alternatives;

n) Annex E set to informative;

o) Annex F set to informative.

Annexes use the same numbering as Clauses 1 to 12 with an annex letter prefix. Hence, the numbering is not necessarily continuous. Where no additional requirements are identified, the clause is not shown.

The text of this standard is based on the following IEC documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/1643/FDIS</td>
<td>18/1657/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

International standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

A list of all the parts in the IEC 80005 series, published under the general title *Utility connections in port*, can be found on the IEC website.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The “colour inside” logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.
INTRODUCTION

For a variety of reasons, including environmental considerations, it is becoming an increasingly common requirement for ships to shut down ship generators and to connect to shore power for as long as practicable during stays in port. The scenario of receiving electrical power and other utilities from shore is historically known as "cold ironing".

The intention of this part of IEC/IEEE 80005 is to define requirements that support, with the application of suitable operating practices, efficiency and safety of connections by compliant ships to compliant high-voltage shore power supplies through a compatible shore-to-ship connection.

With the support of sufficient planning, cooperation between ship and terminal facilities, and appropriate operating procedures and assessment, compliance with the requirements of this document is intended to allow different ships to connect to high-voltage shore connections (HVSC) at different berths. This provides the benefits of standard, straightforward connection without the need for adaptation and adjustment at different locations that can satisfy the requirement to connect for as long as practicable during stays in port.

Ships that do not apply this document can find it impossible to connect to compliant shore supplies.

Where deviations from this document are considered, it is useful to note the effects of such deviations in the compatibility study.

Where the requirements and recommendations of this document are complied with, high-voltage shore supplies arrangements are likely to be compatible for visiting ships for connection.

Clauses 1 to 12 are intended for application to all HVSC systems. They intend to address mainly the safety and effectiveness of HVSC systems with a minimum level of requirements that would standardise on one solution. This document includes the requirement to complete a detailed compatibility assessment for each combination of ship and shore supply prior to a given ship arriving to connect to a given shore supply for the first time. This does not preclude the use of this document e.g. for safety purposes, such as for proprietary connection systems where a ship operates on dedicated routes.

Annex A includes cabling recommendations that should be used in HVSC systems.

The other annexes in this document are ship-specific annexes that include additional requirements related to agreed standardisation of solutions to achieve compatibility for compliant ships at different compliant berths and to address safety issues that are considered to be particular to that ship type.

Annex A is considered informative for the purposes of this document. Annex A contains performance-based requirements for shore connection cables and was developed by technical experts from a number of countries. IEC technical committee 18, subcommittee 18A and IEC technical committee 20 were consulted regarding cable requirements. It was determined that existing standards for cable can be used at this time and there is presently no need to develop a separate standard for shore connection cables.
1 Scope

This part of IEC/IEEE 80005 describes high-voltage shore connection (HVSC) systems, onboard the ship and on shore, to supply the ship with electrical power from shore.

This document is applicable to the design, installation and testing of HVSC systems and addresses
- HV shore distribution systems,
- shore-to-ship connection and interface equipment,
- transformers/reactors,
- semiconductor/rotating frequency convertors,
- ship distribution systems, and
- control, monitoring, interlocking and power management systems.

It does not apply to the electrical power supply during docking periods, for example dry docking and other out of service maintenance and repair.

Additional and/or alternative requirements can be imposed by national administrations or the authorities within whose jurisdiction the ship is intended to operate and/or by the owners or authorities responsible for a shore supply or distribution system.

It is expected that HVSC systems will have practicable applications for ships requiring 1 MVA or more or ships with HV main supply.

Low-voltage shore connection systems are not covered by this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034 (all parts), Rotating electrical machines

IEC 60076 (all parts), Power transformers

IEC 60079 (all parts), Explosive atmospheres

IEC 60092-101, Electrical installations in ships – Part 101: Definitions and general requirements
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO, IEC and IEEE maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 cable management system
all equipment designed to control, monitor and handle the HV-flexible and control cables and their connection devices

3.2 equipotential bonding
provision of electric connections between conductive parts, intended to achieve equipotentiality

3.3 equipotential bond monitoring device
device that monitors the equipotential bonding between two points

3.4 ESD-1 emergency shutdown-1
shutdown initiated when the ship moves past the warning range of allowable motion forward, aft or outward from the berth, and which initiates an LNG-ESD signal from shore to ship

3.5 ESD-2 emergency shutdown-2
shutdown initiated when the ship moves past the maximum range of allowable motion forward, aft or outward from the berth, and which initiates loading arm disconnection on shore

3.6 high voltage
HV
nominal voltage in range above 1 000 V AC and up to and including 15 kV AC

3.7 LNG-ESD liquefied natural gas-emergency shutdown
type of emergency shutdown defined at LNG terminals

3.8 low voltage
LV
nominal voltage up to and including 1 000 V AC
3.9 PIC
person in charge
individual responsible for HVSC systems operations

3.10 pilot contact
contact of the plug and socket-outlet, which signals correct plug connection and is a safety-related component

3.11 receiving point
connection point of the flexible cable on the ship

3.12 safe
condition in which safety risks are minimized to an acceptable level

3.13 supply point
connection point of the flexible cable on shore

3.14 fail-safe
able to enter or remain in a safe state in the event of a failure

SOURCES: IEC 60050-821:2017, 821-01-10

3.15 safety circuit
normally closed interlocking circuit with pilot contacts and safety devices that shuts down the HVSC system in response to specific initiating events

3.16 connector
coupling device employed to connect conductors of one circuit element with those of another circuit element

4 General requirements

4.1 System description

A typical HVSC system described in this document consists of hardware components as shown in Figure 1.