

SLOVENSKI STANDARD SIST-TS CLC/TS 50535:2011

01-junij-2011

Železniške naprave - Pomožni sistemi močnostnih pretvornikov na tirnih vozilih

Railway applications - Onboard auxiliary power converter systems

Bahnanwendungen - Hilfsbetriebeumrichtersystem für Schienenfahrzeuge

Applications ferroviaires - Convertisseur auxiliaire pour les véhicules ferroviaires

(standards iteh.ai)
Ta slovenski standard je istoveten z: CLC/TS 50535:2010

SIST-TS CLC/TS 50535:2011

https://standards.iteh.ai/catalog/standards/sist/5bbc20c3-84fc-4ccb-b99b-1863638b97c6/sist-ts-clc-ts-50535-2011

ICS:

45.060.01 Železniška vozila na splošno Railway rolling stock in general

SIST-TS CLC/TS 50535:2011 en

SIST-TS CLC/TS 50535:2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST-TS CLC/TS 50535:2011

https://standards.iteh.ai/catalog/standards/sist/5bbc20c3-84fc-4ccb-b99b-1863638b97c6/sist-ts-clc-ts-50535-2011

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE

TECHNISCHE SPEZIFIKATION

CLC/TS 50535

April 2010

ICS 45.060.01

English version

Railway applications - Onboard auxiliary power converter systems

Applications ferroviaires -Convertisseur auxiliaire pour les véhicules ferroviaires Bahnanwendungen -Hilfsbetriebeumrichtersystem für Schienenfahrzeuge

iTeh STANDARD PREVIEW

This Technical Specification was approved by CENELEC on 2010-03-26.

(Standard S. Iteh.al)

CENELEC members are required to announce the existence of this TS in the same way as for an EN and to make the TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force.

SIST-TS CLC/TS 50535:2011

https://standards.iteh.ai/catalog/standards/sist/5bbc20c3-84fc-4ccb-b99b-

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

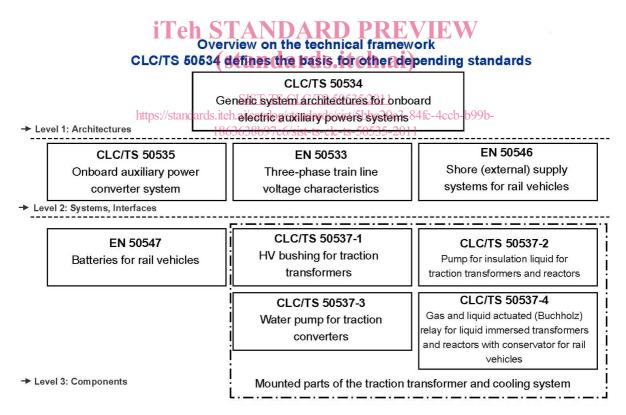
European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

Foreword

This Technical Specification was prepared by SC 9XB, Electromechanical material on board rolling stock, of Technical Committee CENELEC TC 9X, Electrical and electronic applications for railways.

It was circulated for voting in accordance with the Internal Regulations, Part 2, Subclause 11.3.3.3 and was accepted as a CENELEC Technical Specification on 2010-03-26.


Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following date was fixed:

latest date by which the existence of the CLC/TS has to be announced at national level

(doa) 2010-06-26

This standardization project was derived from the EU-funded Research project MODTRAIN (MODPOWER). It is part of a series of standards, referring to each other. The hierarchy of the standards is intended to be as follows:

Annexes defined to be normative belong to the content of this Technical Specification; annexes defined as informative are used only for information.

Annex A is normative and Annexes B, C and D are informative.

Contents

Intr	oduct	on	5				
1	Scop	e	6				
2	Norn	native references	6				
3	Term	Terms, definitions and abbreviations					
	3.1 3.2	Terms and definitions					
4	Onbo	pard auxiliary power converter systems					
	4.1 4.2	Definitions for onboard auxiliary power converter systems					
5	Gene	General requirements					
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Environmental conditions Protection class Shock and vibration Reliability, availability, maintainability and lifetime Material Fire protection Nameplate Documentation	.15 .16 .16 .16				
6	Elect						
		rical Interfaces Electric power interface of the auxiliary power converter	.18				
_	6.2 Electric power interface of the battery charger						
7		rol interface of the onboard auxiliary power converter system (APCS)					
8	Tests	SIST-TS CLC/TS 50535:2011 https://standards.iteh.ai/catalog/standards/sist/5bhc20c3-84fc-4cch-b99h-	.26				
Anr	nex A	https://standards.itch.ai/catalog/standards/sist/5bbc20c3-84fc-4ccb-b99b- (normative) Single pole train line voltages (RIC train line) 86363869/c6/sist-8-clc-ts-50535-2011	.27				
Anr		(informative) Train configurations					
A	B.1 B.2	Train types Typical ratings of auxiliary power converters and battery chargers	.28				
		(informative) Type code					
Anr	D.1 D.2 D.3 D.4 D.5	(informative) Example of the APCS communication interface Signal groups General APCS data Input circuit and/or power conversion data Auxiliary converter output data Battery charger and LVDC output data	.31 .31 .33				
Bib	liogra	ohy	.40				
	ures						
_		Typical interfaces of an onboard auxiliary power converter system					
Figu	Figure 2 – Example of auxiliary power converter system (Train class A)12						
Figu	Figure 3 – Example of auxiliary power converter system (Train class C0 and C1)1						
Figu	Figure 4 – Interface between battery and battery charger						
Figu		Control interface between the train communication and monitoring system (TCMS) and onboard auxiliary power system (APCS)	.26				
Figu	ıre B.1	- Train types for the development of generic system architectures	.28				
Figu	ire C.1	- Example of onboard auxiliary power converter system (Train class A)	.29				

Tables

Table 1 – Classification of power inputs of onboard auxiliary power converters	13
Table 2 – Classification of functionalities of onboard auxiliary power converters	13
Table 3 – Classification of power outputs of onboard auxiliary power converters	14
Table 4 – Classification of basic attributes of onboard auxiliary power converters	14
Table 5 – Type code definition of onboard auxiliary power converters with a single output	14
Table 6 – Type code definition of onboard auxiliary power converters with multiple outputs	14
Table 7 – Specification of input power interface	18
Table 8 – Specification of output 3 AC voltage	20
Table 9 – Specification of input supply voltage	23
Table 10 – Specification of output 1 DC voltage	24
Table A.1 – Nominal voltages and tolerances of the single pole train line voltage	27
Table A.2 – Frequencies of the single pole power supply train line voltage systems	27
Table C.1 – Classification of the onboard auxiliary power converter system	30
Table C.2 – Type code definition of the onboard auxiliary power converter system	30
Table D.1 – Data exchange from APCS to TCMS	32
Table D.2 – Data exchange from TCMS to APCS	33
Table D.3 – Data exchange from APCS to TCMS	34
Table D.4 – Data exchange from TCMS to APCS	35
Table D.5 – Data exchange from APCS to TCMS ds.iteh.ai)	36
Table D.6 – Data exchange from TCMS to APCS	37
Table D.7 – Data exchange from APCS/to TCMS.dards/sist/5bbc20c3-84fc-4ccb-b99b	38
Table D.8 – Data exchange from TeMS to Apost-ts-ck-ts-50535-2011	39

Introduction

This Technical Specification defines characteristics and interfaces for electric onboard auxiliary power converter systems. This includes auxiliary power converters and battery chargers. The following European Standards and Technical Specifications refer to the defined target energy supply system in this present Technical Specification:

CLC/TS 50534	Railway applications – Generic system architectures for onboard electric auxiliary power systems			
	(Characteristics and interface of generic system architectures for onboard electric auxiliary power systems)			
EN 50533 1)	Railway applications – Three-phase train line voltage characteristics			
	(Characteristics of the voltage system used for auxiliary power supply)			
EN 50546 ²⁾	Railway applications – Shore (external) supply system for rail vehicles			
	(Interface description of the shore supply including protection functions)			
EN 50547 ²⁾	Railway applications – Batteries for rail vehicles			
i7	(Standardized batteries for rail vehicles and charging characteristics)			
CLC/TS 50537 (series)	Railway applications - Mounted parts of the traction transformer and cooling system			
https://s	(Standardized products used in conjunction with traction transformers and traction cooling systems)			

CLC/TS 50535 has to be understood as a basic document of a set of hierarchically structured specifications as illustrated in the foreword. This set of European Standards and Technical Specifications defines a consistent technical framework beginning on an architectural level, followed by standards belonging to important system interfaces and concluding this hierarchy with Technical Specifications on component level. The diagram in the foreword points up these different system integration levels and shows the dependencies between the documents.

One main objective of this standardisation initiative is to simplify the cooperation between concerned railway stakeholders in charge of operating onboard auxiliary power systems, designing systems able to cope with the operational requirements and stakeholders manufacturing auxiliary power system components, which provide the requested services.

¹⁾ At draft stage.

²⁾ Under development.

1 Scope

This Technical Specification defines the classification of the electric onboard auxiliary power converter system and defines its basic characteristics and interfaces. The onboard auxiliary power converter system consists of the auxiliary converter and the battery charger function.

This Technical Specification applies to locomotive hauled passenger trains and electric multiple units with distributed power as well as trains with concentrated power heads. Relevant train configuration and concerned energy supply subsystems are defined in CLC/TS 50534. This Technical Specification provides a technical base for implementation of onboard auxiliary power systems on different trains.

The objective of this specification is to define the required interfaces and characteristics of the onboard auxiliary power converter system in order to enable further standardisation:

- interface between onboard auxiliary power converter system and onboard traction power system;
- interface of the onboard auxiliary power supply system to the low voltage grid and to a shore supply (stationary workshop supply or external supply);
- interfaces of the auxiliary converter and the battery charger;
- characteristics of the onboard auxiliary power converter system.

The electrical operational behaviour is defined by requirements. Requirements for the type tests as well as the routine test are referred.

(standards.iteh.ai)

2 Normative references

SIST-TS CLC/TS 50535:2011

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

TS 45545 (series)	2009 3)	Railway applications – Fire protection on railway vehicles
CLC/TS 50534		Railway applications – Generic system architectures for onboard electric auxiliary power systems
EN 12663	2000	Railway applications – Structural requirements of railway vehicle bodies
EN 50121-3-2	2000 4)	Railway applications – Electromagnetic compatibility – Part 3-2: Rolling stock – Apparatus
EN 50125-1	1999	Railway applications – Environmental conditions for equipment – Part 1: Equipment on board rolling stock
EN 50163 + A1	2004 2007	Railway applications – Supply voltages of traction systems
EN 50238		Railway applications – Compatibility between rolling stock and train detection systems

³⁾ Part 5 is of CENELEC origin – Other parts are from CEN.

⁴⁾ Superseded by EN 50121-3-2:2006, Railway applications – Electromagnetic compatibility – Part 3-2: Rolling stock – Apparatus.

EN 50272-2	2001	Safety requirements for secondary batteries and battery installations – Part 2: Stationary batteries
EN 50388		Railway applications – Power supply and rolling stock – Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability
EN 50533	5)	Railway applications – Three-phase train line voltage characteristics
EN 50547	6)	Railway applications – Batteries for rail vehicles
EN 60077-1	2002	Railway applications – Electric equipment for rolling stock – Part 1: General service conditions and general rules (IEC 60077-1:1999, mod.)
EN 60529		Degrees of protection provided by enclosures (IP Code) (IEC 60529)
EN 60721-3-5		Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 5: Ground vehicle installations (IEC 60721-3-5)
EN 61287-1	2006	Railway applications – Power convertors installed on board rolling stock – Part 1: Characteristics and test methods (IEC 61287-1:2005)
EN 61373	1999 iTeh 2002 ⁷⁾	Railway applications – Rolling stock equipment – Shock and vibration tests (IEC 61373)
IEC 60038		STANDARD PREVIEW IEC standard voltages. (standards.iteh.ai)

3 Terms, definitions and abbreviations

SIST-TS CLC/TS 50535:2011

3.1 Terms and definitionsds.iteh.ai/catalog/standards/sist/5bbc20c3-84fc-4ccb-b99b-1863638b97c6/sist-ts-clc-ts-50535-2011

For the purposes of this document, the following terms and definitions apply.

3.1.1

customer

buyer of the train, where the auxiliary power converter system is integrated

3.1.2

operator

responsible party for providing the transportation service

3.1.3

system integrator

responsible party for integrating the auxiliary power converter products or units into the overall system. This includes electrical and mechanical integration aspects

3.1.4

manufacturer

the manufacturer designs and manufactures the on-board auxiliary power converter products

⁵⁾ At draft stage.

⁶⁾ Under development.

^{7)} IEC 60038:2002 (Ed. 6.2) combines IEC 60038:1983 (Ed. 6) + A1:1994 + A2:1997. It is superseded by IEC 60038:2009 (Ed. 7), *IEC standard voltages*.

3.1.5

system architectures

system architectures describe basic designs of systems consisting of several subsystems and functions. The description is precise in concern of essential interfaces and functions. The internal design of the subsystems itself is not part of the architecture description

3.1.6

Train Control and Monitoring System (TCMS)

overriding control and monitoring system on the train

3.1.7

active front-end converters

converters with turn-off semiconductor, which can actively control their current waveforms and their power factor

3.1.8

onboard Auxiliary Power Converter System (APCS)

onboard subsystem, which transforms converts electric energy for traction auxiliary loads and comfort loads

3.1.9

Auxiliary Converter Unit (ACU)

part of the onboard auxiliary power converter system and includes multiple power conversion functionality to supply the auxiliary converter intermediate circuit voltage (Aux DC-Link) and the 3 AC train lines

3.1.10

(standards.iteh.ai)

auxiliary converter intermediate circuit voltage

DC Link Auxiliary (DCLA)

SIST-TS CLC/TS 50535:2011

intermediate circuit voltage in a voltage range of typically 6002 V to 8004 V used in auxiliary converters e.g. with 3 AC FF output 1863638b97c6/sist-ts-clc-ts-50535-2011

3.1.11

auxiliary power interface on coaches for international rulement

RIC interface

defines the input voltage for auxiliary converter on coaches for international rulement. The voltage and frequencies for RIC are defined in Annex B

3.1.12

auxiliary winding interface on main traction transformer (TRAF)

TRAF interface derived from the auxiliary winding on the main traction transformer

3.1.13

traction converter intermediate circuit voltage

DC Link Traction (DCLT)

intermediate circuit voltage of the traction converter

3.1.14

power train line

electric energy distribution facility (e.g. bus bars, cables) used for the distribution of auxiliary power in a train and coaches

3.1.15

3 AC FF train line voltage systems

voltage systems applied in conjunction with 3 AC power train lines using fixed frequency and consequently fixed voltage amplitude (3 AC 400 V 50 Hz or 3 AC 480 V 60 Hz in accordance with IEC 60038)

3.1.16

3 AC VF train line voltage systems

voltage systems applied in conjunction with 3 AC power train lines using variable frequency and consequently variable voltage amplitude. Variation of frequency and voltage is used e.g. for power control and noise reduction purposes

3.1.17

traction auxiliary loads

loads installed in subsystems, which are needed for the operation of the traction system and driving operation of the train or locomotive. Pumps and fans in cooling systems for traction components are representative examples of this load group. Compared to other auxiliary loads (comfort loads) a high availability is required

3.1.18

comfort loads

loads connected to the auxiliary power supply system, which are used for the provision of a comfortable environment and climate e.g. in the passenger coach interior, vestibule or other compartments for passengers and train crew. Compared to traction auxiliary loads the requested availability for comfort loads is lower and a reduced performance in degraded mode might be accepted

3.1.19

HVAC unit

facility installed in coaches or locomotives used for heating, ventilation and air-conditioning (HVAC)

iTeh STANDARD PREVIEW

3.1.20

linear load

(standards.iteh.ai)

loads with a linear dependency between supply voltage and current producing negligible harmonic content compared to rated values, e.g. heating resistors and induction motors are regarded as linear loads

https://standards.iteh.ai/catalog/standards/sist/5bbc20c3-84fc-4ccb-b99b-1863638b97c6/sist-ts-clc-ts-50535-2011

3.1.21

non-linear load

in contrast to linear loads, non-linear loads generate significant harmonic current or voltage content. This kind of loads connected to a supply system with significant internal impedance will produce significant harmonic voltages, e.g. uncontrolled rectifiers and active front-end converters belong to this load group

3.1.22

unbalanced load

loads, which will cause unsymmetrical phase currents, i.e. currents that have different amplitudes and/or phase angles in the three phases of a 3 AC supply system. Single phase loads connected to a 3 AC system are a representative example of unbalanced loads

3.1.23

Power Factor (PF)

under periodic conditions, ratio of the absolute value of the active power P to the apparent power S

$$\lambda = \frac{|P|}{S}$$

3.1.24

Displacement Power Factor (DPF)

under periodic conditions, ratio of the absolute value of the active power of the P to the apparent power S, but only calculated for the fundamental values

$$DPF = \cos(\varphi_1) = \frac{|P_1|}{S_1}$$

3.1.25

Total Harmonic Distortion (THD)

ratio of the r.m.s. value of the harmonic content of an alternating quantity to the r.m.s. value of the fundamental component of the quantity

$$THD = \sqrt{\frac{\sum_{h=2}^{h=40} U_h^2}{U_1^2}}$$

where

U represents a voltage;

 U_1 is the r.m.s. value of the fundamental voltage component;

h is the harmonic order;

 U_h is the r.m.s. value of the harmonic voltage component of order h

NOTE The total harmonic ratio may be restricted to a certain harmonic order. This is to be stated.

3.1.26

Total Distortion Content (TDC)

quantity remaining when the fundamental component is subtracted from an alternating quantity, all being treated as functions of time

$$TDC = \sqrt{Q^2 - Q_1^2}$$
iTeh STANDARD PREVIEW

where

 Q_1 is the r.m.s. value of the fundamental component;

Q is the total r.m.s. value;

Can represent either current or voltage. It includes both harmonic and interharmonic components. 1863638b97c6/sist-ts-clc-ts-50535-2011

3.1.27

Total Distortion Ratio (TDR)

ratio of the r.m.s. value of the total distortion content of an alternating quantity to the r.m.s. value of the fundamental component of the quantity

$$TDR = \frac{TDC}{Q_1} = \frac{\sqrt{Q^2 - Q_1^2}}{Q_1}$$

3.1.28

Battery Charger (BC)

power electronic converter (AC-DC or DC-DC) used to supply low voltage loads and to charge rechargeable batteries in the low voltage grid

3.1.29

low voltage supply systems

LV-DC system

low voltage supply system encompasses DC voltage supplies for control units, lighting and other loads, which need an uninterruptible, and highly available electric energy supply. In most applications, the low voltage supply system is fed by the auxiliary power supply system and supported e.g. by a rechargeable battery

3.2 Abbreviations

For the purposes of this document, the following abbreviations apply.

3 AC Three-phase Alternative Current or voltage

ACU Auxiliary Converter Unit

APCS onboard Auxiliary Power Converter System

BC Battery Charger
DC Direct Current
DCCA DC CAtenary
DCLA DC Link Auxiliary
DCLT DC Link Traction

DPF displacement power factorEMC Electro-Magnetic Compatibility

IC Common Isolation
IS Separate Isolation
FF Fixed Frequency

HVAC Heating, Ventilation and Air Conditioning

LV-DC Low voltage supply system ANDARD PREVIEW

N Neutral (standards.iteh.ai)

NO No galvanic isolation

PF Power Factor SIST-TS CLC/TS 50535:2011

https://standards.iteh.ai/catalog/standards/sist/5bbc20c3-84fc-4ccb-b99b-

PWM Pulse Width Modulated_{1863638b97c6/sist-ts-clc-ts-50535-2011}

r.m.s. Root Mean Square

RIC Regolamento Internazionale delle Carrozze

SIN Sinusoidal waveform

TCMS Train Control and Monitoring System

TDC Total Distortion ContentTDR Total Distortion RatioTHD Total Harmonic DistortionTLI Train Line Interconnection

TRAF Auxiliary winding of the main transformer U_{CM} Common mode voltage at star point

VF Variable Frequency

4 Onboard auxiliary power converter systems

4.1 Definitions for onboard auxiliary power converter systems

General requirements of the electronics systems installed in the rail vehicles are defined in EN 61287-1. Onboard auxiliary power converter systems are an integral part of the electrical system in trains. They are a collection of power components that convert, manage and distribute electrical power from the input source(s) to the auxiliary loads.