

Edition 1.0 2020-10

TECHNICAL SPECIFICATION

Nanomanufacturing - Key control characteristics - VIEW Part 6-3: Graphene-based material – Domain size: substrate oxidation (standards.iten.al)

<u>IEC TS 62607-6-3:2020</u> https://standards.iteh.ai/catalog/standards/sist/653b4637-5f4b-484b-bf72-383fc0776e14/iec-ts-62607-6-3-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore liec ch/csc and collected fr If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. IEC TS 62607-6-3:2020

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

https://standards.iteh.ai/catalog/standards/sist/653b4637-5f4b-484b-bf72-

383fc0776e14/iec-ts-62607-6-3-2020

Edition 1.0 2020-10

TECHNICAL SPECIFICATION

Nanomanufacturing - Key control characteristics EVIEW Part 6-3: Graphene-based material - Domain size: substrate oxidation

IEC TS 62607-6-3:2020 https://standards.iteh.ai/catalog/standards/sist/653b4637-5f4b-484b-bf72-383fc0776e14/iec-ts-62607-6-3-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 07.030, ICS 07.120

ISBN 978-2-8322-8939-6 0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	4
INTRODUCTION	6
1 Scope	7
2 Normative references	7
3 Terms and definitions	7
3.1 General terms	8
3.2 Graphene related terms	8
3.3 Key control characteristics measured in accordance with this document	9
4 General	9
4.1 Measurement principle	9
4.2 Sample preparation method	10
4.3 Measurement system	11
4.4 Description of measurement equipment/apparatus	12
4.5 Calibration standards	12
4.6 Ambient conditions during measurement	
5 Measurement procedure	12
5.1 Calibration of measurement equipment	
5.2 Detailed protocol of the measurement procedure	
5.2.1 General (standards itch ai)	
6 Posults to be reported	IJ
IFC TS 62607-6-3:2020	13
6.1 General.	13
6.3 Test conditions	13
6.4 Measurement specific information	13
6.5 Test results	14
Annex A (informative) Worked example	
A 1 Example	15
A.2 Sampling plan	
A.3 Format of the test report	
Annex B (informative) Alternative methods for evaluating graphene domains and	
defects	21
Bibliography	22
Figure 1 – Applications of graphene	6
Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries	
Figure 3 – Optical image of the graphene domains on Cu foil	
Figure 4 – Schematic view of oxidation system	
Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size	
distribution	12
Figure 6 – Example of domain size analysis	
Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at	
1 050 °C by CVD with CH ₄	15
Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in	
Figure A.6	16

IEC TS 62607-6-3:2020 © IEC 2020 - 3 -

Figure A.3 – Measuring graphene domain size of Figure A.2 using Image J	16
Figure A.4 –Domain size distribution and average domain size of graphene shown in Figure A.2	17
Figure A.5 – Accumulative domain size distribution shown in Figure A.4 and average domain size of graphene measured at 9 points shown in Figure A.6	18
Figure A.6 – Location of the analysed area on the sample	18
Figure B.1 – Typical methods for observing graphene domain and grain boundaries	21
Table A.1 – Product identification (in accordance with IEC 62565-3-1)	19
Table A.2 – General material description (in accordance with IEC 62565-3-1)	19
Table A.3 – Measurement related information	19
Table A.4 – KCC measurement results	20

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TS 62607-6-3:2020</u> https://standards.iteh.ai/catalog/standards/sist/653b4637-5f4b-484b-bf72-383fc0776e14/iec-ts-62607-6-3-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 6-3: Graphene-based material – Domain size: substrate oxidation

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (Standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity, independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62607-6-3, which is a Technical Specification, has been prepared by technical committee 113, Nanotechnology for electrotechnical products and systems.

The text of this Technical Specification is based on the following documents:

Enquiry draft	Report on voting
113/496/DTS	113/549/RVDTS

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC TS 62607 series, published under the general title *Nanomanufacturing – Key control characteristics*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

383fc0776e14/iec-ts-62607-6-3-2020

INTRODUCTION

Graphene with two-dimensional honeycomb structures of carbon atoms is known to have exceptional electrical, thermal, and mechanical properties. Because of these properties, graphene is considered for applications in high speed, flexible and transparent devices. Figure 1 shows the images of graphene field effect transistor, flexible touch screen in display, and transparent electrode in solar cell. These applications of graphene are promising candidates for nanoelectronics and optoelectronics. Graphene has been widely investigated by researchers from academic institutions, research institutes, and industries.

Figure 1 – Applications of graphene

Graphene synthesized on Cu or Ni substrate by chemical vapour deposition (CVD) is composed of graphene domains formed during the nucleation and initial growth stage. Graphene defects, such as pinholes, domain boundaries, and cracks, can be formed during the CVD growth or the transfer process.

Properties of graphene are related to the size and distribution of graphene domains and defects. As graphene domain size is increased and graphene defects are reduced, electrical and thermal properties of graphene are improved.

Graphene domains and defects are usually observed by atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and scanning tunnelling microscopy (STM). These analysis methods may cause inconvenience in preparing a sample for analysis and require very expensive equipment that provides only local information of several micrometres and below.

Facile, fast, reliable methods of evaluating graphene domains have not yet been established and urgently need to be developed.

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 6-3: Graphene-based material – Domain size: substrate oxidation

1 Scope

This part of IEC TS 62607 establishes a standardized method to determine the structural key control characteristic

- domain size
 - for films consisting of graphene grown by chemical vapour deposition (CVD) on copper by
- substrate oxidation.

It provides a fast, facile and reliable method to evaluate graphene domains formed on copper foil or copper film for understanding the effect of the graphene domain size on properties of graphene and enhancing the performance of high speed, flexible, and transparent devices using CVD graphene.

- The domain size determined in accordance with this document will be listed as a key control characteristic in the blank detail specification for graphene IEC 62565-3-1. Domain density is an equivalent measure.
- The domain size as derived by this method is defined as the mean value of size of the domains in the observed area specified by supplier in terms of cm² or µm².
- The method is applicable for graphene grown on copper by CVD. The characterization is done on the copper foil before transfer to the final substrate.
- As the method is destructive, the samples cannot be re-launched into the fabrication process.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ASTM E1951-14, Standard Guide for Calibrating Reticles and Light Microscope Magnification

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 **General terms**

3.1.1 blank detail specification BDS

structured generic specification of the set of key control characteristics which are needed to describe a specific nano-enabled product without assigning specific values and/or attributes

- 8 -

Note 1 to entry: The templates defined in a blank detail specification list the key control characteristics for the nanoenabled material or product without assigning specific values to it.

Note 2 to entry: Examples of nano-enabled products are: nanomaterials, nanocomposites and nano-subassemblies.

Note 3 to entry: Blank detail specifications are intended to be used by industrial users to prepare their detail specifications used in bilateral procurement contracts. A blank detail specification facilitates the comparison and benchmarking of different materials. Furthermore, a standardized format makes procurement more efficient and more error robust.

312 sectional blank detail specification SBDS

specification based on a blank detail specification adapted for a subgroup of the nano-enabled product

Note 1 to entry: In general, the sectional blank detail specification contains a subset of those key control characteristics listed in the blank detail specification. In addition, sectional specific key control characteristics can be added if they are not listed in the blank detail specification.

Note 2 to entry: The templates defined in the sectional blank detail specification can contain key control characteristics with and without assigned values and attributes. eh.ai)

Note 3 to entry: The section can be defined by application, manufacturing method or general material properties.

3.1.3

IEC TS 62607-6-3:2020

detail specification https://standards.iteh.ai/catalog/standards/sist/653b4637-5f4b-484b-bf72-383fc0776e14/iec-ts-62607-6-3-2020 DS

specification based on a blank detail specification with assigned values and attributes

Note 1 to entry: The properties listed in the detail specification are usually a subset of the key control characteristics listed in the relevant blank detail specification. The industrial partners define only those properties which are required for the intended application.

Note 2 to entry: Detail specifications are defined by the industrial partners. SDOs will be involved only if there is a general need for a detail specification in an industrial sector.

Note 3 to entry: The industrial partners can define additional key control characteristics if they are not listed in the blank detail specification.

3.2 Graphene related terms

3.2.1

domain

single crystal of graphene, which might or might not contain defects

Note 1 to entry: The domain is surrounded by the domain boundary, a line discontinuation of crystal structure.

3.2.2

domain boundary

in-plane interface between two or more crystalline domains of a 2D material where the crystallographic direction of the lattice changes

IEC TS 62607-6-3:2020 © IEC 2020

3.2.3 graphene graphene layer single-layer graphene monolayer graphene single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure

-9-

Note 1 to entry: It is an important building block of many carbon nano-objects.

Note 2 to entry: As graphene is a single layer, it is also sometimes called monolayer graphene or single-layer graphene and abbreviated as 1LG to distinguish it from bilayer graphene (2LG) and few-layered graphene (FLG).

Note 3 to entry: Graphene has edges and can have defects and grain boundaries where the bonding is disrupted.

[SOURCE: ISO/TS 80004-13:2017, 3.1.2.1]

3.2.4 graphene-based material GBM

graphene material

grouping of carbon-based 2D materials that include one or more of graphene, bilayer graphene, few-layer graphene, graphene nanoplate, and functionalized variations thereof as well as graphene oxide and reduced graphene oxide

Note 1 to entry: "Graphene material" is a short name for graphene-based material.

3.3 Key control characteristics measured in accordance with this document (standards.iteh.ai)

3.3.1

key control characteristic KCC

key performance indicatorndards.iteh.ai/catalog/standards/sist/653b4637-5f4b-484b-bf72-

material property or intermediate product characteristic which can affect safety or compliance with regulations, fit, function, performance, quality, reliability or subsequent processing of the final product

IEC TS 62607-6-3:2020

Note 1 to entry: The measurement of a key control characteristic is described in a standardized measurement procedure with known accuracy and precision.

Note 2 to entry: It is possible to define more than one measurement method for a key control characteristic if the correlation of the results is well-defined and known.

3.3.2

domain size

mean value of size of the domains in the observed area specified by the supplier

Note 1 to entry: The unit of domain size is cm^2 or $\mu m^2.$

4 General

4.1 Measurement principle

Domain boundary is the good pathway for active oxygen species while active oxygen species are blocked by graphene within domain. Oxygen species pass through the domain boundary and oxidize Cu substrate. Copper oxide can be easily observed by microscope. An optical microscope or scanning electron microscope image is analysed using a software program such as Image J.¹

¹ ImageJ is a public domain, Java-based image processing program developed at the U.S. National Institutes of Health. This information is given for the convenience of users of this document and does not constitute an endorsement by IEC of this product.