INTERNATIONAL STANDARD

Third edition 1998-12-15

Iron ores — Determination of the moisture content of a lot

Minerais de fer — Détermination de l'humidité d'un lot

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3087:1998 https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998

Contents

1 Scope	1
2 Normative references	1
3 Definitions	1
4 Principle	1
5 Apparatus	1
6 Samples	2
7 Procedure	2
8 Verification	3
9 Calculation and expression of results	
10 Test report	5
Annex A (normative) Determination of moisture content of adhesive or wet iron ores	6
Annex A (normative) Determination of moisture content of adhesive or wet iron ores Annex B (normative) Corrections for sprinkled water and/or rain-water	7
ISO 3087:1998 Annex C (informative) Precisions of moisture/measurement/sist/95de7301-11e8-4eba-9019-	
83f9d2cddeb0/iso-3087-1998 Annex D (informative) Examples of test reports	13

© ISO 1998

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet iso@iso.ch

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 3087 was prepared by Technical Committee ISO/TC 102, *Iron ores*, Subcommittee 1, *Sampling*

This third edition cancels and replaces the second edition (ISO 3087:1987) which has been technically revised.

Annexes A and B form an integral part of this of this International Standard, annexes C and D are for information only.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3087:1998 https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998

Introduction

Currenly, large tonnages of iron ore are traded internationally and a small error in the measured moisture content (percentage by mass) of a lot has a considerable effect on the commercial transaction. The correct determination of moisture content of a lot is, therefore, a matter of importance for both the purchaser and the vendor.

This International Standard does not address the determination of the hygroscopic moisture content of a test sample for chemical analysis. If the hygroscopic moisture content is required to be determined, reference should be made to ISO 2596:1994, *Iron ores – Determination of hygroscopic moisture in analytical samples – Gravimetric and Karl Fischer methods*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3087:1998 https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998

Iron ores — Determination of the moisture content of a lot

1 Scope

This International Standard specifies a method for the determination of the moisture content of a lot of iron ore. This method is applicable to all iron ores, whether natural or processed.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

iTeh STANDARD PREVIEW ISO 3082:—¹), Iron ores – Sampling and sample preparation procedures.

(standards.iteh.ai)

ISO 11323:1996, Iron ores – Vocabulary.

ISO 3087:1998 https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998

3 Definitions

For the purposes of this International Standard, the definitions given in ISO 11323 apply.

4 Principle

Drying of the test portion in air at 105 °C to constant mass and measurement of the loss in mass. Calculation of the moisture content.

5 Apparatus

5.1 Drying pan, having a smooth surface, free from contamination and capable of accommodating the specified quantity of a test portion in a layer of nominal thickness not greater than 31,5 mm.

5.2 Drying oven, equipped with a temperature indicator and control apparatus capable of regulating the temperature at any point in the oven at 105 °C \pm 5° C and so designed as to maintain this temperature with a current of air to ensure efficient drying but without any loss of sample, and fitted with a fan that allows for both the circulation and change of air.

5.3 Weighing device, accurate to at least 0,05 % of the initial mass of a test portion.

The capacity of the weighing device shall be enough for the initial mass of the test portion.

¹⁾ To be published. (Revision of ISO 3081:1986, ISO 3082:1987 and ISO 3083:1986)

6 Samples

Test samples which have been taken and prepared in accordance with ISO 3082 shall be used. The mass of a test portion, in relation to its nominal top size, is specified in table 1, in accordance with ISO 3082.

Nominal top size of test portion	Minimum mass of test portion
(mm)	(kg)
31,5	10
22,4	5
10,0	1

Table 1 —	Minimum	mass	of	test	portion
-----------	---------	------	----	------	---------

7 Procedure

7.1 Number of moisture measurements

Carry out one moisture measurement per test portion on the number of test portions specified in table 2, according to the conditions of preparation of the test sample.

Preparation of test sample	(stanchambersofiteh.ai) partial samples per lot	Number of test portions to be tested
From gross sample	ISO <u>3087:1998</u>	4
From partial sample	83f9d2cddeb 2 /iso-3087-1998	4
	3 to 7	2 minimum
	≥ 8	1 minimum
From increment	-	1 minimum

iTehrable 2 Number of test portions IEW

In order to minimize losses of moisture to the atmosphere, it is necessary to perform all the initial weighings of the test portions as quickly as possible after obtaining those test portions.

7.2 Measurement

Spread the test portion in a layer of nominal thickness not greater than 31,5 mm in the tared drying pan (5.1) and determine the total mass immediately. Record the total mass, the mass of the drying pan, the initial mass of the test portion (m_1) and the numerical value of 0,05 % of the initial mass of the test portion.

Place the drying pan with the test portion in the drying oven (5.2) set at 105 °C, and maintain this temperature for not less than 4 h. Remove the drying pan with the test portion from the drying oven and weigh it immediately while still hot in order to minimize any reabsorption of moisture. Alternatively, weigh the test portion after cooling in air in a container having a close-fitting airtight lid. In each case, report the method of weighing.

Place once more, the drying pan with the test portion in the drying oven, heat for a further 1 h, and then repeat the weighing.

Repeat the procedure in the previous paragraph until the difference in mass between subsequent measurements becomes 0,05 % or less of the initial mass of the test portion.

NOTE 1 The weighing device should be protected from the influence of heat.

NOTE 2 Drying times will be dependent on the type of ore under test. For a series of measurements carried out on a particular type of ore, the drying time of the test portion may be specified by check experiments carried out beforehand.

NOTE 3 For convenience, the test portion of mass 10 kg for ore of particle size less than 31,5 mm may be divided into two portions, each of which is subjected to moisture measurement. In calculating the results, the mean of the two values of initial mass and the mean of the two values of the drying loss in mass should be used.

8 Verification

Regular checking of apparatus and procedures is essential to verify the test results. Checks shall be carried out prior to the commencement of a routine test in accordance with this International Standard and at regular intervals thereafter. The frequency of checking is a matter for each laboratory to determine. A detailed record of all verification activities shall be maintained for the following items:

- a) Sprinkled water measurement
- volumenometer;
- b) Rainfall measurement
- rain gauge;
- c) Moisture test

iTeh STANDARD PREVIEW

- oven temperature/temperature regulation; (standards.iteh.ai)
- circulation and change of air in oven;

ISO 3087:1998 — weighing device. https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998

9 Calculation and expression of results

9.1 Test portion

The result of the determination of the moisture content, w_i , expressed as a percentage by mass, for each test portion, is given by equation (1) and reported to the second decimal place.

$$w_i = \frac{m_1 - m_2}{m_1} \times 100$$
 (1)

where

- m_1 is the initial mass, in grams, of the test portion;
- m_2 is the mass, in grams, of the test portion after drying.

9.2 Lot

The moisture content of a lot is given by one of equations (2) to (5) as the occasion may demand, and reported to the first decimal place.

9.2.1 When moisture determination is conducted on the gross sample from the lot, the moisture of the lot is determined as follows.

When the range of the four test results does not exceed 1,3*r* as shown in table 3, the arithmetic mean, \overline{w} , of the four results shall be the moisture content, expressed as a percentage by mass, of the lot as given by equation (2).

$$\overline{w} = \frac{w_1 + w_2 + w_3 \quad w_4}{4} \tag{2}$$

where w_1 , w_2 , w_3 and w_4 are the results of the determinations of the moisture contents, expressed as percentages by mass, on each of the four test portions.

When the range of the four test results exceeds 1,3*r* given in table 3, the median shall be taken as the moisture content of the lot. The median of four test results is defined as the mean of the two non-extreme test results.

Average of moisture content	Repeatability limit	1,3 <i>r</i>
\overline{W}	r	
[%(<i>m</i> / <i>m</i>)]	(%)	(%)
$\overline{w} \leq 3$	0,20	0,26
$3 < \overline{w} \leq 6$	0,25	0,33
$6 < \overline{w}$	0,31	0,40

Table 3 — Repeatability limit of moisture determination on the gross sample

iTeh STANDARD PREVIEW

9.2.2 When mass basis sampling has been performed and moisture determination is conducted on each partial sample, the weighted mean, \overline{w} , of the results from all the partial samples, considering the number of increments for each partial sample, shall be the moisture content, respected as a percentage by mass, of the lot, as given by equation (3),

https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998

$$\overline{w} = \frac{\sum_{i=1}^{k} N_i w_i}{\sum_{i=1}^{k} N_i}$$

(3)

where

- k is the number of partial samples;
- N_i is the number of increments in the *i*th partial sample;
- w_i is the result of the determination of the moisture content, expressed as a percentage by mass, of the *i*th partial sample, according to table 2 using as the number of test portions either 4 or 2.

If it is impracticable to sample the lot as a whole or desirable to sample a lot in separate parts of unequal mass as in the case of time basis sampling, the moisture content of each part shall be determined independently and the weighted mean, \overline{w} , of the results, expressed as a percentage by mass, of the lot calculated from the individual results using equation (4).

(4)

(5)

$$\overline{w} = \frac{\sum_{i=1}^{k} m_i w_i}{\sum_{i=1}^{k} m_i}$$

where

- k is the number of partial samples;
- m_i is the mass of the *i*th part;
- w_i is the result of the determination of the moisture content, expressed as a percentage by mass, of the *i*th part.

9.2.3 When moisture determination is conducted on each increment, the arithmetic mean, \overline{w} , of the results for all increments obtained according to 9.1 shall be the moisture content, expressed as a percentage by mass, of the lot as given by equation (5)

$$\overline{w} = \frac{\sum_{i=1}^{n} w_i}{n}$$

where

iTeh STANDARD PREVIEW

- *n* is the number of increments; (standards.iteh.ai)
- *w_i* is the result of the determination of the moisture content, expressed as a percentage by mass, of the *i*th increment. https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998

10 Test report

The test report shall contain the following information.

- a) reference to this International Standard, i.e., ISO 3087;
- b) details necessary for the identification of the sample;
- c) result of the test;
- d) reference number of the result;
- e) any characteristics noticed during the determination, and any operation not specified in this International Standard which may have had an influence on the results.

Annex A

(normative)

Determination of moisture content of adhesive or wet iron ores

Introduction

When it is difficult to conduct sieving, crushing and dividing owing to a sample being adhesive or excessively wet, the sample may be pre-dried until preparation can be conducted without difficulty.

In this case, the moisture content of the lot shall be obtained by using the pre-drying method according to the procedure specified in this annex. In handling the test sample and weighing the initial mass and pre-dried mass of the test sample, attention shall be paid to ensuring the measurement precision of the pre-dried moisture content.

A.1 Determine the initial mass of the test sample.

A.2 Spread the test sample in a uniform thickness and dry it in air or in a drying apparatus at a temperature no higher than 105 °C. The choice of temperature and time for this pre-drying stage shall not exceed a point where an ore is likely to reabsorb moisture during subsequent processing.

A.3 After pre-drying, again determine the mass of the test sample PREVIEW

A.4 Calculate the pre-dried moisture content, w_p , expressed as a percentage by mass, of the test sample using equation (A.1).

 $w_{\rm p} = \frac{m'_1 - m'_2}{m'_1} \times 100 \qquad \frac{\rm ISO \ 3087:1998}{\rm https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-83f9d2cddeb0/iso-3087-1998}$ (A.1)

where

 m'_1 is the initial mass, in grams, of the test sample;

 m'_{2} is the mass, in grams, of the test sample after pre-drying.

A.5 Prepare the test portions for moisture measurement from the pre-dried sample according to the procedure in ISO 3082.

A.6 Determine the drying loss of the test portion in accordance with 7.2 and calculate the additional moisture content, expressed as a percentage by mass, in accordance with 9.1.

A.7 Calculate the total (as received) moisture content, w_{pd} , expressed as a percentage by mass, of the test sample using equation (A.2).

$$w_{\rm pd} = w_{\rm p} + \frac{100 - w_{\rm p}}{100} \times w_{\rm d}$$
 (A.2)

where w_d is the additional moisture content obtained in accordance with 9.1 after pre-drying, expressed as a percentage by mass.

A.8 Determine the moisture content, as a percentage by mass, of the lot in accordance with 9.2.

A.9 If the mass of the moisture sample is not large, the entire quantity of the sample may be dried in order to conduct the moisture determination according to the method specified in the body of this International Standard.

Annex B

(normative)

Corrections for sprinkled water and/or rain-water

Introduction

Nowadays, in many countries, strict environmental regulations must be observed in the iron ore and steel industry. When water is sprinkled over iron ore during loading and/or unloading operations to prevent dust evolution, the moisture content of a lot shall be corrected, according to the procedure specified in this annex, for the mass of water sprinkled.

This annex also describes a method for correcting the moisture content of a lot containing rain water.

B.1 General

B.1.1 Water is sprinkled for the following reasons:

- a) environmental regulations at loading and/or unloading ports PREVIEW
- b) difficulty of handling iron ores due to ore characteristics, weather conditions, handling equipment, etc.

B.1.2 Correction for rain-water shall be made whenever rainfall occurs during the loading or unloading operations, and the moisture content of the lot is known to have been affected.

https://standards.iteh.ai/catalog/standards/sist/95de7301-11e8-4eba-9019-

83f9d2cddeb0/iso-3087-1998

B.2 Corrections for sprinkled water

B.2.1 General

In the case of unloading of a lot, sprinkled water refers to water sprinkled (or sprayed) in the vessel holds and/or on any sections extending to a point where samples are taken. In the case of loading of a lot, sprinkled water refers to water sprinkled in the holds and/or on the loading conveyors located after the point where moisture samples are taken.

Two methods of correction for sprinkled water are mentioned in this clause. One refers to water added before the sampling point during unloading operations, the other to water added after the sampling point during loading operations.

B.2.2 Measurement of sprinkled water

The measurement of sprinkled water shall be made with a volumenometer having an accuracy of ± 5 %. The volume obtained shall be converted to a mass, m_3 , in tonnes, by multiplying by the density of the sprinkled water.

NOTE Fresh water is assumed to have a density of 1 t/m³.