

Edition 2.0 2017-08

INTERNATIONAL STANDARD

NORME **INTERNATIONALE**

Optical fibres – iTeh STANDARD PREVIEW Part 1-33: Measurement methods and test procedures – Stress corrosion Susceptibility (Standards.iten.al) susceptibility

IEC 60793-1-33:2017

Fibres optiques https://standards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-Partie 1-33: Méthodes de mesures et procédures d'essai – Résistance à la corrosion sous contrainte

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by/a 3variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. 529499241125/iec-

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms, containing 20,000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

1653000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

65 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

Edition 2.0 2017-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Optical fibres – **iTeh STANDARD PREVIEW** Part 1-33: Measurement methods and test procedures – Stress corrosion susceptibility

IEC 60793-1-33:2017

Fibres optiquesimps://standards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-Partie 1-33: Méthodes de mesures et procédures d'essai – Résistance à la corrosion sous contrainte

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.180.10

ISBN 978-2-8322-4736-5

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FOREWOR	Σ	5
INTRODUC	ΓΙΟΝ	7
1 Scope.		8
2 Normat	ive references	8
3 Terms a	and definitions	8
4 Overvie	ew of test methods	9
5 Referer	nce test methods	9
6 Appara	tus	9
7 Samplir	ng and specimens	9
7.1 G	eneral	9
7.2 S	pecimen length	9
7.3 S	pecimen preparation and conditioning	9
8 Proced	ure	10
9 Calcula	tions	10
10 Results		10
11 Specific	cation information	11
Annex A (no	rmative) Dynamic <i>n</i> value, <i>n</i> d, by axial tension	12
A.1 G	eneral TICH STANDARD PREVIEW	
A.2 A	oparatus (standards.iteh.ai)	
A.2.1	General	12
A.2.2	Support of the specime	13
A.2.3	Stressing applicational catalog/standards/sist/566ef1a0-019f-44a4-92e5-	14
A.2.4	Fracture force measurement	14
A.2.5	Strain rate control	14
A.2.6	Stress rate characterization	15
A.3 Te	est sample	15
A.3.1	Sample size	15
A.3.2	Sample size (optional)	15
A.4 Pi	rocedure	
A.5 C		
A.5.1	Fracture stress	
A.5.2	Practure stress at a given strain rate	10
A 6 R	esults	17
Annex B (no	prmative) Dynamic <i>n</i> value. <i>n</i> d. by two-point bending	
B1 G	eneral	19
B.2 A	oparatus	
B.2.1	General	
B.2.2	Stepper motor control	19
B.2.3	Stepper motor-driven movable platen	19
B.2.4	Stationary platen	19
B.2.5	Platen velocity	19
B.2.6	Fibre fracture detecting system	19
B.3 Te	est sample	20
B.4 Pi	rocedure	20

B.5	Cal	culations	21
B.5.′	1	Fracture stress	21
B.5.2	2	Dynamic (two-point bending) stress corrosion susceptibility parameter,	21
B 5 3	3	"0 Results	21
Annex C) (norr	native) Static <i>n</i> value n_{-} by axial tension	22 24
C 1	Ger		24
C 2	App	aratus	24
C 2 ⁻	1 1	General	24
C.2.2	2	Gripping the fibre at both ends	
C.2.3	3	Stressing the fibre	
C.2.4	4	Measuring time to fracture	24
C.3	Tes	t sample	24
C.4	Pro	cedure	24
C.5	Cal	culations	
C.5.1	1	Fracture stress	
C.5.2	2	Static (tension) stress corrosion susceptibility parameter. n_{2}	
C 5 3	3	Simple median	25
C 6	Res	ults	25
Annex D	(norr	native) Static <i>n</i> value n_{-} by two-point bending	20
	(non	iTeh STANDADD PDFVIFW	27
D.1	Ann		، ۲ 77
ע.2	4 Abb	Test equipment (standards.iteh.ai)	، ۲
D.Z.	ו ר	Fibre freeture detection	۲ ۲
D.Z.4	۷ ۲۰۰	Fibre fracture detection. IEC 60793-1-33:2017	21
D.3	Tes	t sample, //standards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-	21
D.4	Pro	cedure	21
D.5			27
D.5.	1	Fracture stress	27
D.5.2	2	Static (two-point bending) stress corrosion susceptibility parameter, $n_{\rm S}$	28
D.6	, Res		28
Annex E	(norn	native) Static <i>n</i> value, <i>n</i> _S , by uniform bending	29
E.1	Ger	eral	29
E.2	Арр	aratus	29
E.2.7	1	General	29
E.2.2	2	Support of the sample	29
E.2.3	3	Stressing the fibre	29
E.2.4	4	Measuring time to fracture	29
E.3	Tes	t sample	29
E.4	Pro	cedure	29
E.5	Cal	culations	30
E.5.′	1	Fracture stress	30
E.5.2	2	Static (uniform bending) stress corrosion susceptibility parameter, <i>n</i> _S	30
E.6 Results			
Annex F (informative) Considerations for dynamic stress corrosion susceptibility			31
	- 001	simon size and sample size	۲0
F.1	ວpe ₁	Cimen size and sample size	31
F.1.1	ו ר	Specimen size	31
F.1.2	2	Sample size	31

F.2	Numeric algorithm for calculation of dynamic stress corrosion susceptibility parameter, <i>n</i> d			
F.3	Complete method to calculate fracture stress	33		
Annex G (informative) Considerations for static stress corrosion susceptibility	0.5		
parameter		35		
G.1	Homologous method	35		
G.2	Maximum likelihood estimate	35		
methods	informative) Considerations on stress corrosion susceptibility parameter test	36		
H.1	General	36		
H.2	Crack growth	36		
H.3	Types of stress corrosion susceptibility test methods	37		
H.4	Comparison of <i>n</i> value obtained with different methods	37		
H.5	Conclusion	38		
Bibliograp	hy	40		
Figure A.1	– Schematic of translation test apparatus	12		
Figure A.2	2 – Schematic of rotational test apparatus	13		
Figure A.3	B – Schematic of rotational test apparatus with load cell	13		
Figure A.4	I – Representation of dynamic fatigue graph	18		
Figure B.1	- Schematic of two-point bending unit	22		
Figure B.2	2 – Schematic of possible dynamic ratigue ((wo-point bending) apparatus	23		
Figure B.3	3 – Schematic of dynamic fatigue data	23		
Figure C.1	I – Schematic of possible static fatigue (tension) apparatus	26		
Figure D.1	I – Possible test equipmentoschematico793-1-33-2017	28		
Figure E.1	– Schematic of possible static fatigue (uniform bending) apparatus	30		
Figure H.1 to-fracture and static	 COST 218 round robin results of fracture strength versus "effective" time- e for dynamic and static axial tension, dynamic and static two-point bending mandrel test methods 	38		
Figure H.2 to-fracture and static	2 – COST 218 round robin results of fracture strength versus "effective" time- e for dynamic and static axial tension, dynamic and static two-point bending mandrel test methods	39		
Table F.1	– 95 % confidence interval for n_{d}	32		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL FIBRES –

Part 1-33: Measurement methods and test procedures – Stress corrosion susceptibility

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (Standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. https://standards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60793-1-33 has been prepared by subcommittee 86A: Fibres and cables, of IEC technical committee 86: Fibre optics.

This second edition cancels and replaces the first edition published in 2001. It constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) removal of RTM;
- b) changes to scope.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
86A/1803/FDIS	86A/1824/RVD

- 6 -

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 60793 series, published under the general title *Optical fibres*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

- 7 -

Annexes A, B, C, D, and E form an integral part of this document.

Annexes F, G, and H are for information only.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 60793-1-33:2017</u> https://standards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-52949924ff25/iec-60793-1-33-2017

OPTICAL FIBRES –

- 8 -

Part 1-33: Measurement methods and test procedures – Stress corrosion susceptibility

1 Scope

This part of IEC 60793 contains descriptions of the five main test methods for the determination of stress corrosion susceptibility parameters.

The object of this document is to establish uniform requirements for the mechanical characteristic of stress corrosion susceptibility for silica-based fibres. Dynamic fatigue and static fatigue tests are used to determine the (dynamic) n_d value and (static) n_s value of stress corrosion susceptibility parameters. Currently, only the n_d -value is assessed against specification. Measured values greater than 18 per this procedure reflect the n_d -value of silica, which is approximately 20. Higher values will not translate to demonstrable enhanced fatigue resistance.

Silica fibre mechanical tests determine the fracture stress and fatigue properties under conditions that model the practical applications as closely as possible. The following test methods are used for determining stress corrosion susceptibility:

- A: Dynamic n_d value by axiastension ards.iteh.ai)
- B: Dynamic *n*_d value by two-point bending;
- C: Static n_s value by axial tension. <u>IEC 60793-1-33:2017</u> https://standards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-
- D: Static n_s value by two-point bending; icc-60793-1-33-2017
- E: Static *n*_s value by uniform bending.

These methods are appropriate for category A1, A2 and A3 multimode, class B single-mode fibres and class C intraconnecting single-mode fibres.

These tests provide values of the stress corrosion parameter, n, that can be used for reliability calculations according to IEC TR 62048 [18]¹.

Information common to all methods is contained in Clauses 1 to 10, and information pertaining to each individual test method appears in Annexes A, B, C, D, and E.

Annexes F and G offer considerations for dynamic and static stress corrosion susceptibility parameter calculations, respectively; Annex H offers considerations on the different stress corrosion susceptibility parameter test methods.

Normative references 2

There are no normative references in this document.

Terms and definitions 3

No terms and definitions are listed in this document.

¹ Numbers in square brackets refer to the Bibliography.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

4 Overview of test methods

The following test methods are available:

- Dynamic n_d value by axial tension, see Annex A.
- Dynamic n_d value by two-point bending, see Annex B.
- Static n_s value by axial tension, see Annex C.
- Static n_s value by two-point bending, see Annex D.
- Static n_s value by uniform bending, see Annex E.

5 Reference test methods

At the time of this revision, no agreement could be reached in maintaining method A only as RTM in using it with some fibres equipped with modern coatings. Method A or B should be used to resolve disputes because they may be completed in a duration practical for dispute resolution.

iTeh STANDARD PREVIEW (standards.iteh.ai)

6 Apparatus

See Annexes A, B, C, D, and E for ceach of sthe layout drawings and other equipment requirements for each of sthe anethods atalog/standards/sist/566ef1a0-019f-44a4-92e5-52949924ff25/iec-60793-1-33-2017

52949924ff25/iec-60/93-1-33-2

7 Sampling and specimens

7.1 General

These measurements are statistical in nature. A number of specimens or samples from a common population are tested, each under several conditions.

Failure stress or time statistics for various sampling groups are used to calculate the stress corrosion susceptibility parameters.

7.2 Specimen length

Specimen length is contingent on the test procedure used. See Annexes A, B, C, D, and E for the length required for each test method. For tensile tests, the length ranges from 0,5 m to at most 5 m. For two-point bending tests, the actual length tested is less than 1 cm and for uniform bending tests, about 1 m.

7.3 Specimen preparation and conditioning

All of the test methods shall be performed under constant environmental conditions. Unless otherwise specified in the detail specification, the nominal temperature shall be in the range of 20 °C to 23 °C with a tolerance of ± 2 °C for the duration of the test. Unless otherwise specified in the detail specification, the nominal relative humidity (RH) shall be in the range of 40 % to 60 % with a tolerance of ± 5 % for the duration of the test.

Unless otherwise specified, all specimens shall be pre-conditioned in the test environment for a minimum period of 12 h.

A method for extrapolating such stress corrosion susceptibility parameters to service environments different from the default environment specified above has not been developed.

It has been observed that the value of n produced by these tests can change after even brief exposure of the fibre to elevated temperature and humidity. A guide for the use of these methods is documented in IEC TR 62048 [18].

The observed value of stress corrosion susceptibility parameter, n, may differ between fatigue test methods, if not performed in the same effective measuring time and effective glass area under test (see Annex H). Care should be taken in the choice of test method. This should be agreed between the customer and supplier.

8 Procedure

See Annexes A, B, C, D, and E for the individual test methods.

Each of several samples (consisting of a number of specimens) is exposed to one of a number of stress conditions. For static fatigue tests, a constant stress is applied from sample to sample and time to failure is measured. For dynamic fatigue tests, the stress rate is varied from sample to sample, and the failure stress is measured.

The following is an overview of the procedures common to all methods:

- complete pre-conditioning; STANDARD PREVIEW
- divide the specimens into sample groups: ds.iteh.ai)
- apply the specified stress conditions to each sample group;
- measure time or stress at failure; <u>IEC 60793-1-33:2017</u>
- complete calculationstandards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-

52949924ff25/iec-60793-1-33-2017

9 Calculations

The calculations for each individual test method are found in Annexes A, B, C, D, and E.

10 Results

The following information shall be reported with each test:

- fibre identification;
- test date;
- stress corrosion susceptibility parameter;
- test method.

The following information shall be provided upon request:

- specific information as required by the test method;
- relative humidity and ambient temperature;
- any special pre-conditioning.

Clauses A.5, B.5, C.5, D.5, and E.5 have results that apply to each specific method.

IEC 60793-1-33:2017 © IEC 2017 - 11 -

11 Specification information

The detail specification shall specify the following information:

- information to be reported;
- any deviations to the procedure that apply;
- failure or acceptance criteria.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 60793-1-33:2017</u> https://standards.iteh.ai/catalog/standards/sist/566ef1a0-019f-44a4-92e5-52949924ff25/iec-60793-1-33-2017

Annex A

(normative)

Dynamic n value, n_d , by axial tension

A.1 General

This method is designed for determining the dynamic stress corrosion susceptibility parameter (dynamic *n* value, n_d) of optical silica-based fibre at specified constant strain rates.

This method is intended only to be used for those optical fibres of which the median fracture stress is greater than 3 GPa at the highest specified strain rate. For fibres with median fracture stress less than 3 GPa, the conditions herein have not demonstrated sufficient precision.

This method is intended to test fatigue behaviour of fibres by varying the strain rate. The test is applicable to fibres and strain rates for which the logarithm of fracture stress versus the logarithm of strain rate behaviour is linear.

A.2 Apparatus

A.2.1 General iTeh STANDARD PREVIEW

Clause A.2 describes the fundamental requirements of the equipment used for dynamic fracture stress testing. There are several configurations that meet these requirements. Examples are presented in Figures A.1 to A.3. Unless otherwise specified in the detail specification, use a gauge length of 500 mm/for tensile test specimens.

Figure A.1 – Schematic of translation test apparatus

Figure A.2 – Schematic of rotational test apparatus

Figure A.3 – Schematic of rotational test apparatus with load cell

A.2.2 Support of the specimen

Grip the fibre length to be tested at both ends and subject the fibre to tension until fracture occurs in the gauge length section of the fibre. Minimize the fibre fracture at the grip – a sensitive aspect of this method – by providing a surface friction that prevents excessive slippage.

Do not include breaks that occur at the grip in the sample or use them in the calculations.

Use a capstan, optionally covered with an elastomeric sheath, to grip the fibre. Wrap a section of the fibre that will not be tested around the capstan several times and secure it at the end with, for example, an elastic band or masking tape. Apply sufficient fibre length at the grip in order to avoid slippage inside the coating (coating type depending aspect [19]). Wrap the fibre with no crossovers. The gauge length is the length of fibre between the axes of the gripping capstans before it is stretched.