INTERNATIONAL STANDARD

First edition 1997-06-01

Soil quality — Laboratory incubation systems for measuring the mineralization of organic chemicals in soil under aerobic conditions

iTeh STANDARD PREVIEW

Qualité du sol — Méthodes de mesure de la minéralisation de produits chimiques organiques dans le sol sous conditions aérobies, au moyen de systèmes d'incubation de laboratoire

ISO 14239:1997 https://standards.iteh.ai/catalog/standards/sist/33af68aa-f1c8-4ec2-b7bc-0c8c03e4b40b/iso-14239-1997

Reference number ISO 14239:1997(E)

Contents

Page

1	Scope	1
2	Normative references	1
3	Methods	1
4	Calculation and expresssion of result	12
5	Test report	13

Annexes

A	Approximate measurement of water-holding capacity of soiR		
B	Bibliography	(standards.iteh.ai)	

ISO 14239:1997 https://standards.iteh.ai/catalog/standards/sist/33af68aa-f1c8-4ec2-b7bc-0c8c03e4b40b/iso-14239-1997

© ISO 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for StandardizationCase postale 56 • CH-1211 Genève 20 • SwitzerlandInternetcentral@iso.chX.400c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

iTeh Sinternational Standard ISO14239 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 4, Biological methods.

Annex A forms an integral part of this International Standard. Annex B is for information only 230-1007

https://standards.iteh.ai/catalog/standards/sist/33af68aa-flc8-4ec2-b7bc-0c8c03e4b40b/iso-14239-1997

Introduction

This International Standard describes incubation systems for determining the mineralization of organic compounds in soil under aerobic conditions.

Mineralization is only one of the parameters which can be used to assess the biodegradation of organic compounds in soil. If mineralization is not extensive, this does not necessarily mean that the test material is not biodegradable. Material balance studies to assess the production of metabolites, in addition to mineralization studies, provide a comprehensive assessment of biodegradation.

It is essential that this International Standard be used in conjunction with ISO 11266, which gives general guidance on the information needed to assess the potential of an organic compound to be degraded in soil. ISO 14239:1997

https://standards.iteh.ai/catalog/standards/sist/33af68aa-f1c8-4ec2-b7bc-

Depending on the aim of the study, it is feasible to use a range of incubation conditions, described below, and different methods of analysis.

NOTE — Several trade names of products are given as examples of products available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of these products.

Soil quality - Laboratory incubation systems for measuring the mineralization of organic chemicals in soil under aerobic conditions

1 Scope

This International Standard specifies three incubation systems for measuring the rates and extent of mineralization of organic compounds in soil by measurement of carbon dioxide evolution. All three incubation systems are applicable to soluble or insoluble compounds but choice of system depends on the overall purposes of the study.

This International Standard does not apply to the use of such systems for material balance studies, which are often test-substance specific.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

https://standards.iteh.ai/catalog/standards/sist/33af68aa-f1c8-4ec2-b7bc-0c8c03e4b40b/iso-14239-1997

ISO 10381-6:1993, Soil quality - Sampling - Guidance on the collection, handling and storage of soil for the assessment of aerobic microbial processes in soil.

ISO 11266:1994, Soil quality - Guidance on laboratory testing for biodegradation of organic chemicals in soil.

ISO 11274:-¹⁾, Soil quality - Determination of the water retention characteristic - Laboratory *methods*.

3 Methods

3.1 General requirements

The following procedures shall be followed, whichever incubation system is selected.

3.1.1 Soil collection and characterization

Soil shall be collected and handled in accordance with ISO 10381-6. The soil shall be characterized in accordance with ISO 11266:1994, 5.1.1.

¹⁾ To be published.

3.1.2 Test material

The test material shall be characterized in accordance with ISO 11266:1994, 5.2.

3.1.3 Incubation conditions

The following conditions shall be used unless there is a specific reason for using different conditions:

Temperature:	$(20 \pm 2)^{\circ}$ C
Pore water pressure of soil:	-0,01 MPa to -0,03 MPa (measured to \pm 5%) as determined .in accordance with ISO 11274 [or between 40% and 60% max. <i>WHC</i> (measured to \pm 5%) in accordance with Annex A.]
Incubation:	in the dark

The incubation conditions should be reported in the test report. If they differ from those above, the reasons for changing them should also be reported in the test report.

A temperature of $(20 \pm 2)^{\circ}$ C has been chosen as a standard for comparative purposes and because it gives relatively rapid results. Temperatures outside this range can be used if they are more appropriate (for example, because of local conditions, lack of cooling equipment).

<u>ISO 14239:1997</u>

3.2 Choice of incubation systems 0c8c03e4b40b/iso-14239-1997

One of the three systems described in this International Standard, the flow-through system (3.3), the soda-lime column system (3.4) or the biometer system (3.5), shall be used.

Data on the mineralization of organic chemicals can most reliably be obtained from experiments with radiolabelled compounds. Where unlabelled organic chemicals are used, a number of controls are necessary and carbon dioxide evaluation data should be analysed statistically.

Recoveries of carbon dioxide (CO₂) in the three systems can be measured using known quantities of unlabelled or ¹⁴C-labelled calcium carbonate and adding sufficient hydrochloric acid to dissolve fully the calcium carbonate.

WARNING The methods in this International Standard use several materials of a hazardous nature. Due care is necessary in their handling and disposal. In particular, all pertinent national regulations should be complied with.

The main advantages and disadvantages of the systems are:

a) Flow-through system:

The main advantages are: sufficient oxygen for long-term, aerobic degradation studies; uses standard laboratory glassware; allows measurement of unlabelled CO_2 (titration), ${}^{14}CO_2$ (scintillation counting), and/or ${}^{14}C$ -labelled volatile products (scintillation counting).

The main disadvantages are: difficulties with complete recoveries when volatile ¹⁴C-compounds are under investigation; sensitivity to leaks in the system.

b) Soda lime column system:

The main advantages are: free access of oxygen for long-term degradation studies; uses standard laboratory glassware; requires little space; adaptable without changes for use with standing or shaken aerobic sediments, pure cultures of microorganisms, algae or plant cell cultures; problem-free incubation under various environmental conditions; full recoveries of applied radioactivity in short- or long-term material balance studies.

The main disadvantages are: ${}^{14}CO_2$ trapped in soda lime has to be released and re-adsorbed in liquid for scintillation counting; water content of soils has to be adjusted at least once per month.

c) Biometer system

The main advantages are: requires little space; adaptable without changes for use with standing cultures of aerobic sediments, pure cultures of microorganisms or algae; problem-free incubation under various environmental conditions; ease of measurement of non-radioactive CO_2 (titration), ${}^{14}CO_2$ (scintillation counting or ${}^{14}C$ -labelled volatile products (scintillation counting).

The main disadvantages are: not ideal for long-term incubations due to lack of free access of air and reduction of partial pressure of oxygen in chamber during incubation; requires special glassware.

3.3 Flow-through system ISO 14239:1997

3.3.1 Primci/flendards.iteh.ai/catalog/standards/sist/33af68aa-flc8-4ec2-b7bc-

0c8c03e4b40b/iso-14239-1997

This method allows determination of the dissipation and/or metabolism of non-radioactive or 14 C-labelled test materials in soil. CO₂-free air is drawn through the incubation vessel containing the treated soil samples. The CO₂ and organic volatiles evolved from the soil are trapped in a series of absorption traps.

3.3.2 Materials and reagents

Reagents of recognized analytical grade shall be used.

3.3.2.1 Source of CO₂-free air (e.g. obtained by passing air through an aqueous solution of strong alkali). For studies with ¹⁴C-labelled compounds, CO₂ need not be removed from the air unless there is a danger of saturation of the CO₂ traps.

3.3.2.2 Ethylene glycol or ethylene glycol methyl ester, for absorption of organic volatiles.

3.3.2.3 Polyurethane foam trap, density 16 kg/m³ for absorption of organic volatiles.

3.3.2.4 Sulfuric acid, $c(H_2SO_4) = 0.5 \text{ mol/l}$, for absorption of alkaline volatiles.

3.3.2.5 Sodium or potassium hydroxide solution, c(KOH) [or (NaOH)] = 0,1 mol/l to 0,5 mol/l for absorption of nonradioactive CO₂; or scintillation cocktail for absorption of ${}^{14}\text{CO}_2{}^{1)}$.

¹⁾ Carbosorb (Canberra Packard) and Oxisolve (Zinsser) are examples of suitable products available commercially This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of these products.

WARNING If the scintillation cocktail is used as a trap, volatile organic amines and solvents can accumulate in toxic concentrations and there is danger of explosion. Therefore it is essential that the work area is well ventilated.

- **3.3.2.6** Scintillation cocktails for determination of the ${}^{14}CO_2$ in alkali traps¹).
- 3.3.3 Apparatus and glassware
- 3.3.3.1 Liquid scintillation counter
- 3.3.3.2 Scintillation vials
- **3.3.3.3** Temperature-controlled incubator or room $(\pm 2^{\circ}C)$
- **3.3.3.4** Membrane pump (capacity, approximately 2,8 m³/h)
- 3.3.3.5 Flow meter
- 3.3.3.6 Flow-restrictor valves
- 3.3.7 Glass dishes for system I, e.g. moist soil (equivalent to 50 g dry mass)
 diameter 5 cm, height 5 cm for samples equivalent to 50 g air-dried soil
 diameter 9,5 cm, height 5 cm for samples equivalent to 300 g air-dried soil
- 3.3.3.8 Erlenmeyer flask (250 ml) for system II
- 3.3.3.9 Gas washing bottles (100 ml) for absorption traps
- 3.3.3.10 Gas washing bottles (200 ml to 500 ml) for moistening the air.
 - iTeh STANDARD PREVIEW
- 3.3.4 Procedure

(standards.iteh.ai)

Choose incubation system I or II described below. System I is more applicable when many samples have to be incubated in limited space, <u>system:II requires</u> more space but is applicable for small-scale experimentsps://standards.iteh.ai/catalog/standards/sist/33af68aa-f1c8-4ec2-b7bc-

0c8c03e4b40b/iso-14239-1997

3.3.4.1 Incubation system I

Incubation of soil samples shall take place in temperature-controlled incubators or rooms (3.3.3.3.). Set up cylindrical, separately removable incubation units in the chamber (see Figure 1). The incubation units shall contain sets of soil samples in glass dishes (3.3.3.7) (normally one incubation set consists of 6 sub-samples). Each incubation unit can be aerated separately.

In order to ensure aerobic conditions, draw a constant stream of CO_2 -free air (3.3.2.1) through each incubation unit using a membrane pump (3.3.3.4).

3.3.4.2 Incubation system II

Incubate the soil sample in a glass flask (e.g. Erlenmeyer flask) (3.3.3.8) in a temperaturecontrolled room or incubator (3.3.3.3). Draw a constant stream of CO₂-free air (3.3.2.1) through the flask.

¹⁾ Hionic fluor and Optifluor (Canberra Packard) are examples of suitable products available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of these products.

3.3.4.3 Absorption of volatile products

For both systems, moisten the CO_2 -free air passing over the soils by bubbling it through 2 gas wash bottles (3.3.3.1) about half-filled with acidified, deionized water (approximately 1 ml of concentrated sulfuric acid per litre of water). Distribute the water-saturated air to the different incubation units via valves (3.3.3.6).

Establish a constant flow of approximately 0,1 l/min through each incubation unit; use a flow meter (3.3.3.5) to measure the flow rates.

For both systems, bubble the outgoing gas through an absorption system to capture volatilized parent compound, volatile metabolite, and CO_2 for subsequent analyses. All connections shall be made of stainless steel or polytetrafluoroethylene (PTFE) tubing. Quantify any ¹⁴C-labelled compounds by liquid scintillation counting, as appropriate.

The absorption systems consist of:

- one gas washing bottle (3.3.3.9) filled with reagent for absorption of organic volatiles (3.3.2.2 or 3.3.2.3);
- one gas washing bottle (3.3.3.9) filled with reagent for absorption of alkaline volatiles (3.3.2.4) (if necessary);
- one gas washing bottle for absorption of CO_2 (3.3.2.5). If high rates of CO_2 -production are expected, a second CO_2 trap is needed.

Figure 1 – Flow-through incubation system

3.4.1 Principle

This system allows determination of the dissipation and/or metabolism of ¹⁴C-labelled test materials in soil. Soil treated with the ¹⁴C-labelled test materials is held in a flask with a ground-glass jointed neck into which a ground-glass jointed glass column has been inserted (see figure 2). The glass column contains a trap for volatilized ¹⁴C-labelled materials and a trap for ¹⁴CO₂. Oxygen and atmospheric gases other than CO₂ move freely into and out of the flask by diffusion.

NOTE In addition to use with soils, the system has also been used for aerobic degradation studies with standing or shaken sediments, pure cultures of microorganisms, algae and plant cell cultures.

3.4.2 Materials and reagents

Reagents of recognized analytical grade shall be used.

3.4.2.1 Granulated soda lime, mesh size 1,5 mm to 3 mm, containing a saturation indicator

3.4.2.2 Glass wool iTeh STANDARD PREVIEW

3.4.2.3 Paraffin oil solution in hexane (2% V/V) for coating glass wool plugs with oil

3.4.2.4 Hydrochloric acid (HCl) (ca. 18% V/V) for dissolution of soda lime granules

3.4.2.5 Carbon dioxide-absorbing solution: $c.g_{12}$ mol/l NaOH (see figure 3) or other suitable CO₂-trapping solutions¹⁾ (see figure 4) og/standards/sist/33af68aa-f1c8-4ec2-b7bc-

3.4.2.6 Scintillation cocktail suitable for mixing with NaOH (if applicable)

3.4.3 Apparatus and glassware

- 3.4.3.1 Liquid scintillation counter
- 3.4.3.2 Scintillation vials
- **3.4.3.3** Temperature-controlled incubator or room (± 2 °C)
- 3.4.3.4 Nitrogen gas
- 3.4.3.5 Flow meter

3.4.3.6 Flow restrictor valves, if required for the glassware set-up for CO₂ evolution.

3.4.3.7 Erlenmeyer flask (e.g. 300 ml) with a ground-glass jointed neck (e.g. 24 or 29 standard joint)

3.4.3.8 Open-ended glass tube (reflux column) fitted with a ground-glass standard joint at one end (e.g. 24 or 29); length about 13 cm, diameter about 1,5 cm to 2 cm (figure 2).

3.4.3.9 Glassware and equipment for transferring the ${}^{14}CO_2$ bound by the soda lime (figure 3 or 4) to an absorbent (3.4.2.5) that is compatible with the scintillation cocktail (3.4.2.6).

¹⁾ An example of a suitable solution is a 5:4 V/V mixture of Permafluor with Carbosorb (Canberra Packard). This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of these products.

3.4.4 Procedure

3.4.4.1 Preparation of column for trapping ¹⁴C-labelled organic materials and ¹⁴CO₂

Prepare a glass column (3.4.3.8) that serves as the extended neck of the incubation flask and which holds, from the base upward, an oil-coated glass wool plug, (which serves as a trap for volatilized ¹⁴C-labelled organic materials), and 8 g to 10 g of soda lime, (which serves as a trap for ¹⁴CO₂) (figure 2). Coat the glass wool plugs with oil by dipping them in an oil-hexane solution (3.4.2.3) and allowing the hexane to evaporate under a fume hood. For experiments that last for more than 1 month, use an additional plug and layer of soda lime to protect the ¹⁴CO₂ trap from saturation with atmospheric CO₂, see figure 2.

3.4.4.2 Incubation of soil treated with ¹⁴C-labelled test material

Place soil treated with the ¹⁴C-labelled test chemical into the Erlenmeyer flask (3.4. 3.7), and close the neck of the flask with the prepared glass column (3.4.4.1). The soda lime on top of the plugs serves as the trap for ¹⁴CO₂. Soda lime can chemically bind up to 20% of its mass in CO₂, however, if the self-indicating soda lime granules change colour, replace them with fresh soda lime. There is no danger of loss of ¹⁴CO₂ from the soda lime so it can be stored in closed containers until analysis. Incubate the soil samples in the temperature-controlled room or incubator (3.4.3.3).

3.4.4.3 Transfer of ¹⁴CO₂ from soda lime to a scintillation cocktail

Carry out this process in a fume cupboard. Pour the soda lime granules from the ¹⁴CO₂ trap into a vacuum flask and assemble the glassware as shown in figure 3, figure 4 or any other equivalent glassware. Add 50 ml of hydrochloric acid (3.4.2.4) dropwise to the soda lime while maintaining a slow flow of nitrogen gas (3.4.3.4) (e.g. 2 l/h to 5 l/h) through the system to sweep the liberated ¹⁴CO₂ into the CO₂-absorbing solution. Maintain the temperature of the water bath at 60°C to 70°C.

After the soda lime has fully dissolved, sweep the system with a stream of the nitrogen gas for at least 20 min to ensure transfer of all traces of ${}^{14}CO_2$ from the flask into the CO₂ trapping devices. Take samples (figure 3) or the whole trap (figure 4) for liquid scintillation counting (3.4.3.1), after mixing with a scintillation cocktail (3.4.2.6) if needed.

NOTE If NaOH is used to capture ${}^{14}CO_2$, it is possible to determine whether the radioactivity consists exclusively of ${}^{14}CO_2$ or a mixture including ${}^{14}C$ volatile organics. ${}^{14}CO_2$ can be eliminated from a sample of the NaOH by slowly acidifying to ~ pH 1. The acidified solution can then be measured for loss of radioactivity.