

Edition 3.0 2018-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Specification of technical grade suppur hexafluoride (SF₆) and complementary gases to be used in its mixtures for use in electrical equipment (standards.iten.al)

Spécification de la qualité technique de l'hexafluorure de soufre (SF₆) et des gaz complémentaires à employer dans les mélanges de SF₆ pour utilisation dans les matériels électriques

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2018 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. a241325b8e73/

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 21/000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

767 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - webstore.jec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 21 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Edition 3.0 2018-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Specification of technical grade sulphur hexafluoride (SF₆) and complementary gases to be used in its mixtures for use in electrical equipment

Spécification de la qualité technique de l'hexafluorure de soufre (SF₆) et des gaz complémentaires à employer dans les mélanges de SF₆ pour utilisation dans les matériels électriques a24f325b8e73/iec-60376-2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.040.20

ISBN 978-2-8322-6148-4

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FOREWORD	4
1 Scope	6
2 Normative references	6
3 Terms, definitions and abbreviated terms	7
3.1 Terms and definitions	7
3.2 Abbreviated terms	
4 General requirements	
5 Requirements for technical grade SF ₆	8
6 Requirements for complementary gases to be used in SF ₆ mixtures	9
7 Environmental impact	10
8 Handling, storage and transportation	10
8.1 Gas handling procedures	10
8.2 Storage and transportation	
Annex A (informative) Sulphur hexafluoride	11
A.1 General	
A.2 Chemical properties	
A.3 Physical properties ST.A.N.D.A.R.D. P.R.E.V.I.E.W.	11
A.4 Electrical properties Annex B (informative) Environmental effects of SF ₆ and its mixtures	12
B.1 General B.2 Ecotoxicology <u>IEC 60376:2018</u>	14
https://standards.iteb.ai/catalog/standards/sist/96300898-fa6a-4bbd-aa05-	14 14
 B.3 Ozone depletion	14
B.5 Reducing the environmental impact of the use of SF ₆ and CF ₄ in electrical equipment	
Annex C (informative) Detection techniques	
C.1 Detection techniques of SF_6	
C.2 Detection techniques of N_2	
C.3 Detection techniques of CF_{4}	
Bibliography	
Figure A.1 – Pressure/temperature/density characteristics for SF ₆ [3]	12
Table 1 – Requirements for technical grade SF ₆	8
Table 2 – Requirements for N_2 to be used in SF ₆ mixtures	9
Table 3 – Requirements for CF_4 to be used in SF_6 mixtures	9
Table A.1 – Main chemical characteristics of SF ₆ [3]	11
Table A.2 – Main physical characteristics of SF ₆ [3]	12
Table A.3 – Main electrical characteristics of SF ₆ [3]	13
Table C.1 – Detection techniques for laboratory analysis of technical grade SF_6 (not	
exhaustive)	16
Table C.2 – Detection techniques for on-site analysis of technical grade SF ₆ (not exhaustive)	16

Table C.3 – Detection techniques for laboratory analysis of technical grade N ₂ used in SF ₆ mixtures (not exhaustive)	17
Table C.4 – Detection techniques for laboratory analysis of technical grade CF_4 used in SF_6 mixtures (not exhaustive)	

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 60376:2018 https://standards.iteh.ai/catalog/standards/sist/96300898-fa6a-4bbd-aa05a24f325b8e73/iec-60376-2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SPECIFICATION OF TECHNICAL GRADE SULPHUR HEXAFLUORIDE (SF₆) AND COMPLEMENTARY GASES TO BE USED IN ITS MIXTURES FOR USE IN ELECTRICAL EQUIPMENT

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (Standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. https://standards.iteh.ai/catalog/standards/sist/96300898-ta6a-4bbd-aa05-
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60376 has been prepared by IEC technical committee 10: Fluids for electrotechnical applications.

This bilingual version (2018-10) corresponds to the monolingual English version, published in 2018-05.

This third edition cancels and replaces the second edition published in 2005. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) the requirements for the use of SF_6 in electrical equipment have been confirmed;
- b) a specification for complementary gases to be used in SF₆ mixtures with N₂ and CF₄ has been included;

- c) the introduction and scope have been merged;
- d) a new repartition of the annexes of IEC 60376, IEC 60480 and IEC 62271-4 has been included.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
10/1056/FDIS	10/1060/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

The French version of this standard has not been voted upon.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or ANDARD PREVIEW
- amended.

(standards.iteh.ai)

IEC 60376:2018 https://standards.iteh.ai/catalog/standards/sist/96300898-fa6a-4bbd-aa05a24f325b8e73/iec-60376-2018

SPECIFICATION OF TECHNICAL GRADE SULPHUR HEXAFLUORIDE (SF₆) AND COMPLEMENTARY GASES TO BE USED IN ITS MIXTURES FOR USE IN ELECTRICAL EQUIPMENT

1 Scope

2

This document defines the quality for technical grade sulphur hexafluoride (SF₆) and complementary gases such as nitrogen (N₂) and carbon tetra-fluoride (CF₄), for use in electrical equipment. Detection techniques, covering both laboratory and in-situ portable instrumentation, applicable to the analysis of SF₆, N₂ and CF₄ gases prior to the introduction of these gases into the electrical equipment are also described in this document.

This document provides some information on sulphur hexafluoride in Annex A and on the environmental effects of SF_6 in Annex B.

Information about SF₆ by-products and the procedure for evaluating the potential effects of SF₆ by-products on human health are covered by IEC 60480, their handling and disposal being carried out according to international and local regulations with regard to the impact on the environment. Handling of SF₆ and its mixtures is covered by IEC 62271-4.

Procedures to determine SF₆ leakages are described in IEC 60068-2-17.

For the purposes of this document, the complementary gases used in SF_6 mixtures will be limited to N_2 or CF_4 .

<u>IEC 60376:2018</u> https://standards.iteh.ai/catalog/standards/sist/96300898-fa6a-4bbd-aa05a24f325b8e73/iec-60376-2018

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-212, International Electrotechnical Vocabulary – Part 212: Electrical insulating solids, liquids and gases (available at http://www.electropedia.org)

IEC 60050-441, International Electrotechnical Vocabulary – Part 441: Switchgear, controlgear and fuses (available at http://www.electropedia.org)

IEC 60050-826, International Electrotechnical Vocabulary – Part 826: Electrical installations (available at http://www.electropedia.org)

IEC 60480, Guidelines for the checking and treatment of sulphur hexafluoride (SF₆) taken from electrical equipment and specification for its re-use

IEC 62271-4, High-voltage switchgear and controlgear – Part 4: Handling procedures for sulphur hexafluoride (SF₆) and its mixtures

3 Terms, definitions and abbreviated terms

Terms and definitions 3.1

For the purposes of this document, the terms and definitions given in IEC 60050-212, IEC 60050-441 and IEC 60050-826 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

NOTE Some of the more important terms are listed here for easy reference.

3.1.1

electrical equipment

item used for such purposes as generation, conversion, transmission, distribution or utilization of electrical energy, such as electric machines, transformers, switchgear and controlgear, measuring instruments, protective devices, wiring systems, current-using equipment, insulated bushings, surge arresters

[SOURCE: IEC 60050-826:2004, 826-16-01, modified – "insulated bushings, surge arresters" has been added.]

iTeh STANDARD PREVIEW

3.1.2

(standards.iteh.ai)

technical grade SF₆ SF₆ gas having a very low level of contaminants in accordance with IEC 60376:2018, Table 1

IEC 60376:2018 3.1.3 https://standards.iteh.ai/catalog/standards/sist/96300898-fa6a-4bbd-aa05-SF₆ mixture a24f325b8e73/iec-60376-2018

gas mixture formed by SF_6 and a complementary gas, typically N_2 or CF_4

3.1.4

container

vessel (cylinder) suitable for the containment of pressurized gases either in gaseous or liquid phase, according to local and/or international safety and transportation regulations

3.1.5

contaminant

foreign substance or material in an insulating liquid or gas which usually has a deleterious effect on one or more properties

[SOURCE: IEC 60050-212:2010, 212-17-27, modified - "solid" has been removed.]

3.2 Abbreviated terms

- GCB gas circuit breaker
- GIL gas insulated line
- GIS gas insulated switchgear
- GIT gas insulated transformer
- GVT gas insulated voltage transformer
- LCA life cycle assessment
- OEM original equipment manufacturer
- GWP global warming potential

4 General requirements

It is the responsibility of the supplier to guarantee that the delivered gas or gas mixture is non-toxic, in accordance with international and local regulations.

5 Requirements for technical grade SF₆

 SF_6 for use in electrical equipment as pure gas or in an SF_6 mixture shall fulfil requirements given in Table 1. The accuracy of the measuring devices shall be taken into account when checking the quality of the gas.

Further handling and storage of the gas and operation of equipment may introduce additional quantities of contaminants. This situation is covered in IEC 60480.

Substance	Concentration	
85	> 98,5 % volume in the gas phase	
SF ₆	For use in mixtures: > 99,7 % volume in the gas phase	
Air	< 10 000 µl/l (i.e. 1 % volume) for pure SF ₆	
All	For use in mixtures: < 2 000 µl/l (i.e. 0,2 % volume)	
CE	Ten ST $<$ 4 000 µl/ (i.e. 0,4 % volume) for pure SF ₆	
CF ₄	For use in mixtures: < 800 µl/l (i.e. 0,08 % volume)	
H ₂ O	< 200 µl/l (i.e. 200 ppmv)	
Mineral oil	< 10 mg/kg (i.e. 10 ppmw)	
Total acidity	cidity https://standards.iteh.ai/catalog/standards/sts/ij6370898¥a6a-4bbd-aa05-	
Key a24f325b8e73/iec-60376-2018		
ppmv = parts per million by volume		
ppmw = parts per million by weight		

Table 1 – Requirements for technical grade SF₆

Regarding the values in Table 1 and depending on the situation, the following considerations shall be taken into account:

- The error in the final mixing percentage of the SF_6 gas mixture mainly depends on handling and purity of SF_6 and the complementary gas. The error due to handling can be reduced by using gas mixing devices, or high accuracy manometers and thermometers (e.g. class 0.1 or better). The error due to purity can be reduced by using high purity gases (e.g. 99,9 % volume or higher).
- SF₆ for use in filling electrical equipment shall fulfil specifications given in Table 1. This is with the exception of gas mixtures with a rated tolerance specified by the original equipment manufacturer (OEM) to be less than ±5 % by volume of the SF₆ percentage. In that case, to limit the total uncertainty after a typical gas handling operation such as refilling in order to comply with OEM specifications on the mixture composition ratio, higher SF₆ purity grade > 99,7 % volume shall be used.
- For the determination of total acidity, the sum of all acidic compounds is reported as one value and expressed as HF equivalent. For further information, refer to [1]¹ and [2].
- For humidity measurement, the limit expressed in Table 1 is equivalent to −36 °C frost point at 100 kPa.

¹ Numbers in square brackets refer to the Bibliography.

NOTE 1 The concentration of the contaminants in SF_6 can be different between the liquid and gas phase. Humidity and air are most likely present in the gas phase while oil is most likely present in liquid phase.

NOTE 2 Detection techniques applicable for laboratory and field verification of these limits are given in Annex C.

NOTE 3 For SF₆ measurement by speed of sound technique, available instruments are typically calibrated for SF₆/N₂ or SF₆/CF₄ mixtures. The presence of significant quantities of a third gas as contaminant in excess of 1 % would affect the accuracy of the measurement.

NOTE 4 Electrochemical sensors have certain cross sensitivities to other substances. The value of 2 μ l/l, measured by an electrochemical SO₂ sensor, can be interpreted as an approximation of the total acidity of 7 μ l/l. Different sensors can react differently to the presence of further substances or flow/pressure variations. Since the electrochemical cells are not sensitive to SF₆, any indication is triggered by some substance other than SF₆.

6 Requirements for complementary gases to be used in SF₆ mixtures

 SF_6 mixtures are used in electrical equipment mainly for cold ambient temperature applications, typically under -40 °C. Other applications at normal ambient temperature include gas insulated transmission lines (GIL) and gas insulated transformers (GIT). SF_6 is mixed with a complementary gas, typically N₂ or CF₄, in the percentage as specified by the original equipment manufacturer in the operating instruction manual, typically from 10 % to 75 % SF₆ volume. The maximum permitted concentrations of other substances present in N₂ are given in Table 2 and in Table 3 for CF₄.

Substance	Concentration	
N ₂	> 99,7 % volume	
H ₂ 0 (stand	ards.1200 µ/4 (l.g. 200 ppmv)	
0 ₂	< 3 000 µl/l (i.e. 3 000 ppmv)	
Mineral oil	EC 603 /6:20 8 v/standards/str(03) (i.e. 10 ppmw)	
Total acidity a24f325	b8e73/iec-60376-⊉0μl∦ (i.e. 7 ppmv)	
Кеу		
ppmv = parts per million by volume		
ppmw = parts per million by weight		

Table 2 – Requirements for N_2 to be used in SF₆ mixtures

Table 3 – Requirements for CF₄ to be used in SF₆ mixtures

Substance	Concentration
CF ₄	> 99,7 % volume
0 ₂	< 500 µl/l (i.e. 500 ppmv)
N ₂	< 1 500 µl/l (i.e. 1 500 ppmv)
H ₂ O	< 200 µl/l (i.e. 200 ppmv)
Mineral oil	< 10 mg/kg (i.e. 10 ppmw)
Total acidity	< 7 µl/l (i.e. 7 ppmv)
Key	
ppmv = parts per million by volume	
ppmw = parts per million by weight	

The error in the final mixing percentage of the SF_6 gas mixture mainly depends on the handling and purity of the gas. The error due to handling can be reduced by using gas mixing devices, or high accuracy manometers and thermometers (e.g. class 0.1 or better). The error due to purity can be reduced by using high purity gases (e.g. 99,9 % volume or higher).

The concentration of N_2 in Table 2 and the concentration of CF_4 in Table 3 are calculated by subtracting from 100 % volume the sum of all contaminants. For the determination of total acidity, the sum of all acidic compounds is reported as one value and expressed as HF equivalent, for further information refer to [1] and [2].

NOTE 1 The concentration of the contaminants in CF_4 can be different between the liquid and gas phase. Humidity, O_2 and N_2 are most likely present in the gas phase while oil is most likely present in liquid phase.

NOTE 2 Detection techniques applicable for laboratory and field verification of these limits are given in Annex C.

7 Environmental impact

 SF_6 , CF_4 and SF_6 mixtures with N_2 and/or CF_4 have a certain environmental impact. Due to this impact, SF_6 , CF_4 and their gas mixtures shall be handled carefully to prevent deliberate release of SF_6 and CF_4 gas into the atmosphere.

More detailed information concerning environmental impact is reported in Annex B.

8 Handling, storage and transportation RD PREVIEW

8.1 Gas handling procedurestandards.iteh.ai)

The need to handle SF_6 and SF_6 mixtures in accordance with the present document, arises when: IEC 60376:2018

https://standards.iteh.ai/catalog/standards/sist/96300898-fa6a-4bbd-aa05-

- the gas is introduced into electrical equipment (0376-2018)
- the gas pressure is topped up in closed pressure systems,
- the gas is drawn from a container for analysis.

For other handling procedures, for example when the gas has to be recovered from an enclosure, a proper handling procedure shall be defined and implemented to limit any release of SF₆ into the environment wherever possible. Further information concerning handling procedures for SF₆ and SF₆ mixtures is provided in IEC 62271-4.

8.2 Storage and transportation

Information concerning gas storage and transportation is provided in IEC 62271-4.

Specific labelling of containers shall be implemented in accordance with the mode of transport and the local and international regulations.

Annex A

(informative)

Sulphur hexafluoride

A.1 General

Sulphur hexafluoride (SF_6) is a synthetic gas formed by 6 atoms of fluorine gathered around a centrally situated atom of sulphur. The chemical bond between fluorine and sulphur is known as one of the most stable existing atomic bonds. Six of them grant the molecule very high chemical and thermal stability.

 SF_6 has a unique combination of properties: high dielectric strength, high thermal interruption capabilities (about 10 times that of air) and high heat transfer performance.

A.2 Chemical properties

Pure SF₆ is odourless, tasteless, colourless, non-toxic, non-flammable, very stable and inert.

Its compatibility with materials used in electric constructions is similar to that of N₂, up to temperatures of about 180 °C. Operation at higher temperatures up to 500 °C is possible, but SF₆ may decompose (producing by-products) in the presence of some catalytic materials.

Table A.1 lists the main chemical characteristics.iteh.ai)

https://standards.itch.ai/catalog/standards/sist/96300898-fa6a-4bbd-aa05-		
Formula a24f325bb	8e7\$Fiec-60376-2018	
CAS number ^a	2551-62-4	
Molecular weight	146,05 g/mol	
Sulphur content	21,95 %	
Fluorine content	78,05 %	
Molecular structure	Octahedral with fluorine atoms at the six corners	
Bonds	Covalent	
Collision cross-section	0,477 nm ²	
Decomposition temperature in quartz container	500 °C	

Table A.1 – Main chemical characteristics of SF₆ [3]

^a The CAS number is assigned by the Chemical Abstracts Service who maintain a registry of chemical substance information. It has no chemical significance. More information is available on ECHA website. Refer to [7].

A.3 Physical properties

 SF_6 is one of the heaviest known gases: in normal ambient conditions it is approximately five times heavier than air. So there is a risk of asphyxiation under conditions of insufficient ventilated areas with a low oxygen concentration (see IEC 62271-4).

The mixing with air by convection and diffusion is slow, but once it has mixed it does not separate again.

Its solubility in water is four times lower than that of air. The thermal conductivity of SF_6 is lower than that of air, the overall heat transfer properties are two to five times better due to its lower viscosity and higher density.