SLOVENSKI STANDARD SIST EN 61158-6-8:2008 01-julij-2008 Nadomešča: SIST EN 61158-6:2004 Industrijska komunikacijska omrežja - Specifikacije za procesno vodilo - 6-8. del: Specifikacija protokola na aplikacijskem nivoju - Elementi tipa 8 (IEC 61158-6-8:2007) Industrial communication networks - Fieldbus specifications - Part 6-8: Application layer protocol specification - Type 8 elements # iTeh STANDARD PREVIEW Industrielle Kommunikationsnetze - Feldbusse - Teil 6-8: Protokollspezifikation des Application Layer (Anwendungsschicht) - Typ 8-Elemente ## SIST EN 61158-6-8:2008 Réseaux de communication industriels Spécifications des bus de terrain - Partie 6-8: Spécification des services des couches d'application Eléments de type 8 Ta slovenski standard je istoveten z: EN 61158-6-8:2008 # ICS: 25.040.40 Merjenje in krmiljenje Industrial process industrijskih postopkov measurement and control 35.100.70 Uporabniški sloj Application layer 35.110 Omreževanje Networking SIST EN 61158-6-8:2008 en,de SIST EN 61158-6-8:2008 # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN 61158-6-8:2008</u> https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f-15ef8501654d/sist-en-61158-6-8-2008 EUROPEAN STANDARD EN 61158-6-8 NORME FUROPÉENNE **EUROPÄISCHE NORM** March 2008 ICS 35.100.70; 25.040.40 Partially supersedes EN 61158-6:2004 English version # Industrial communication networks -Fieldbus specifications -Part 6-8: Application layer protocol specification -**Type 8 elements** (IEC 61158-6-8:2007) Réseaux de communication industriels -Spécifications des bus de terrain -Partie 6-8: Spécification des services des couches d'application -Eléments de type 8 (CEI 61158-6-8:2007) reh STANDARD PTyp-8-Elemente (IEC 61158-6-8:2007) Industrielle Kommunikationsnetze -Feldbusse -Teil 6-8: Protokollspezifikation des Application Layer (Anwendungsschicht) - (standards.iteh.ai) ### SIST EN 61158-6-8:2008 https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f- This European Standard was approved by CENELEC on 2008-02-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. # **CENELEC** European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B - 1050 Brussels EN 61158-6-8:2008 - 2 - #### **Foreword** The text of document 65C/476/FDIS, future edition 1 of IEC 61158-6-8, prepared by SC 65C, Industrial networks, of IEC TC 65, Industrial-process measurement, control and automation, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61158-6-8 on 2008-02-01. This and the other parts of the EN 61158-6 series supersede EN 61158-6:2004. With respect to EN 61158-6:2004 the following changes were made: - deletion of Type 6 fieldbus for lack of market relevance; - addition of new fieldbus types; - partition into multiple parts numbered 6-2, 6-3, ...6-20. The following dates were fixed: latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2008-11-01 latest date by which the national standards conflicting with the EN have to be withdrawn (dow) 2011-02-01 NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in type combinations as specified explicitly in the EN 61784 series. Use of the various protocol types in other combinations may require permission from their respective intellectual-property-right holders. # SIST EN 61158-6-8:2008 IEC and CENELEC draw attention to the fact that it is claimed that compliance with this standard may involve the use of patents as follows, where the [xx] notation indicates the holder of the patent right: #### Type 8: DE 197 39 297 C2 [PxC] "Automatisierungssystem und Steuervorrichtung zur transparenten Kommunikation zwischen verschiedenen Netzwerken." US 2002/0042845 A1 [PxC] "Automation System and connecting Apparatus for the Transparent Communication between two Networks." IEC and CENELEC take no position concerning the evidence, validity and scope of these patent rights. The holders of these patent rights have assured IEC that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holders of these patent rights are registered with IEC. Information may be obtained from: [PxC]: Phoenix Contact GmbH & Co. KG Intellectual Property Licenses & Standards Flachsmarktstr. 8 D-32825 Blomberg, Germany Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights other than those identified above. IEC and CENELEC shall not be held responsible for identifying any or all such patent rights. Annex ZA has been added by CENELEC. EN 61158-6-8:2008 - 3 - ## **Endorsement notice** The text of the International Standard IEC 61158-6-8:2007 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: IEC 61784-1 NOTE Harmonized as EN 61784-1:2008 (not modified). IEC 61784-2 NOTE Harmonized as EN 61784-2:2008 (not modified). ISO/IEC 9506-2 NOTE Harmonized as EN 29506-2:1993 (not modified). # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN 61158-6-8:2008</u> https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f-15ef8501654d/sist-en-61158-6-8-2008 - 4 - # Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. | <u>Publication</u> | Year | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|------------------------|---|-----------------|--------------------| | IEC 60559 | - ¹⁾ | Binary floating-point arithmetic for microprocessor systems | HD 592 S1 | 1991 ²⁾ | | IEC 61158-3-8 | _1) | Industrial communication networks - Fieldbus specifications - Part 3-8: Data-link layer service definition - Type 8 elements | EN 61158-3-8 | 2008 ²⁾ | | IEC 61158-4-8 | _ ¹⁾ | Industrial communication networks - Fieldbus specifications - Part 4-8: Data-link layer protocol specification - Type 8 elements | EN 61158-4-8 | 2008 ²⁾ | | IEC 61158-5-8 | _1) | Industrial communication networks - i Fieldbus specifications - Part 5-8: Application layer service definition - Type 8 elements EN 61158-6-8:2008 | EN 61158-5-8 | 2008 ²⁾ | | ISO/IEC 7498 | https://si
Series | Information, technology - Open Systems
Information, technology - Open Systems
Interconnection - Basic Reference Model:
The Basic Model | EN ISO/IEC 7498 | Series | | ISO/IEC 8822 | _1) | Information technology - Open Systems
Interconnection - Presentation service
definition | - | - | | ISO/IEC 8824-2 | _1) | Information technology - Abstract Syntax
Notation One (ASN.1): Information object
specification | - | - | | ISO/IEC 8825-1 | _1) | Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) | - | - | | ISO/IEC 9545 | _1) | Information technology - Open Systems
Interconnection - Application Layer structure | - | - | ¹⁾ Undated reference. ²⁾ Valid edition at date of issue. IEC 61158-6-8 Edition 1.0 2007-12 # INTERNATIONAL STANDARD Industrial communication networks - Fieldbus specifications - Part 6-8: Application layer protocol specification - Type 8 elements <u>SIST EN 61158-6-8:2008</u> https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f-15ef8501654d/sist-en-61158-6-8-2008 INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE ICS 35.100.70; 25.040.40 ISBN 2-8318-9478-6 # CONTENTS | _ | |)RD | _ | |-----|--------|--|-----| | INT | RODI | JCTION | 8 | | 1 | Scop | e | 9 | | | 1.1 | General | 9 | | | 1.2 | Specifications | 9 | | | 1.3 | Conformance | 9 | | 2 | Norm | native references | 10 | | 3 | Term | s and definitions | 10 | | | 3.1 | ISO/IEC 7498-1 terms | 10 | | | 3.9 | ISO/IEC 8822 terms | 11 | | | 3.11 | ISO/IEC 9545 terms | 11 | | | 3.16 | ISO/IEC 8824 terms | 11 | | | 3.37 | ISO/IEC 8825 terms | 12 | | | 3.40 | Terms and definitions from IEC 61158-5-8 | 12 | | | 3.47 | Other terms and definitions | 12 | | 4 | FAL | syntax description | 13 | | | 4.1 | FAL-AR PDU abstract syntax | 13 | | | 4.2 | Abstract syntax of PDUBody | 16 | | | 4.3 | Abstract syntax of PDUBody Type definitions for ASEs Type definitions for ASEs | 20 | | | 4.4 | Object definitions(standards.iteh.ai) | 23 | | | 4.5 | Abstract syntax of Data types | 25 | | 5 | Tran | sfer syntax <u>SIST EN 61158-6-8:2008</u> | | | | 5.1 | Peripherals encoding rules perstandards/sist/83ea56dd-6335-422f-b59f- | 26 | | | 5.2 | Encoding of APDU types 15ef8501654d/sist-en-61158-6-8-2008 | 26 | | | 5.3 | Encoding of tagged type values | 28 | | | 5.4 | Encoding of simple values | 29 | | 6 | Proto | ocol machine overview | 35 | | 7 | AP-c | ontext state machine | 35 | | | 7.1 | Primitive definitions | 35 | | | 7.2 | State machine description | 36 | | | 7.3 | AP to AP-context initiation state transitions | 37 | | | 7.4 | Functions | 48 | | 8 | FAL | service protocol machine (FSPM) | 51 | | | 8.1 | Summary | 51 | | | 8.2 | Primitive definitions | 51 | | | 8.3 | FSPM state tables | 53 | | 9 | Appli | cation relationship protocol machines (ARPMs) | 56 | | | 9.1 | Queued user-triggered bidirectional-flow control (QUB-FC) ARPM | 56 | | | 9.2 | Buffered network-scheduled unidirectional (BNU) ARPM | 78 | | | 9.3 | Queued user-triggered bidirectional – transparent mode (QUB-TM) ARPM | 86 | | 10 | DLL | mapping protocol machine | 90 | | | 10.1 | Overview | 90 | | | 10.2 | Primitive definitions | 91 | | | 10.3 | DMPM state machine | 94 | | Bib | liogra | phy | 101 | | Figure 1 – APDU overview | 26 | |---|----| | Figure 2 – APDU header | 26 | | Figure 3 – PDU with type extension | 26 | | Figure 4 – PDU with address extension | 27 | | Figure 5 – PDU with type and length extension | 27 | | Figure 6 – Example of an Establish-Request PDU | 27 | | Figure 7 – Encoding of a PRIVATE tagged value | 28 | | Figure 8 – Encoding of a context specific tagged value | 28 | | Figure 9 – Identification information fields | 28 | | Figure 10 - ID-info for tag 0 14 , length entry 0 6 | 29 | | Figure 11 – ID-info for tag 15 255 , length entry 0 6 | 29 | | Figure 12 – ID-info for tag 0 14 , length entry 7 255 | 29 | | Figure 13 – ID-info for tag 15 255 , length entry 7 255 | 29 | | Figure 14 – Encoding of Boolean value TRUE | 29 | | Figure 15 – Encoding of Boolean value FALSE | 29 | | Figure 16 – Encoding of Strings | 30 | | Figure 17 – Encoding of BinaryDate value | 31 | | Figure 18 – Encoding of BinaryDate2000 value RD PREVIEW | 31 | | Figure 19 – Encoding of Time-of-day value and suite hair | 32 | | Figure 20 – Encoding of Time-difference value | 32 | | Figure 21 – Encoding of Time value <u>SIST EN 61158-6-8:2008</u> | 33 | | Figure 21 – Encoding of Time value <u>SIST EN 61158-6-8:2008</u> https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f- Figure 22 – Example for an Object definition of the standards standar | 34 | | Figure 23 – Primitives exchanged between protocol machines | 35 | | Figure 24 – AP to AP-context initiation state machine | 37 | | Figure 25 – State transition diagram of FSPM | 53 | | Figure 26 – State transition diagram of QUB-FC ARPM | 59 | | Figure 27 – State transition diagram of the BNU ARPM | | | Figure 28 – State transition diagram of QUB-TM AREP | 88 | | Figure 29 – State transition diagram of DMPM | 94 | | | | | Table 1 – Primitives issued by FAL-user to AP-context | 35 | | Table 2 – Primitives issued by AP-context to FAL-user | 36 | | Table 3 – AP-context state machine sender transactions | 37 | | Table 4 – AP-context state machine receiver transactions | 41 | | Table 5 – Function ResetArep | 49 | | Table 6 – Function ApContextTest | 49 | | Table 7 – Function ServicesSupportedTest | 49 | | Table 8 – Function ApExplicitConnection | 49 | | Table 9 – Function ImmediateAcknowledge | 49 | | Table 10 – Function ConfirmedServiceCheck | 49 | | Table 11 – Function UnconfirmedServiceCheck | 49 | | Table 12 – Function ArServiceCheck | 50 | | Table 13 – Function ArFspmService | 50 | |---|----| | Table 14 – Function ArAcceeSupported | 50 | | Table 15 – Function MaxFalPduLengthTest | 50 | | Table 16 – Function NegotiateOutstandingServices | 50 | | Table 17 – Function RequestedServicesSupportedTest | 51 | | Table 18 – Function IndicatedServicesSupportedTest | 51 | | Table 19 – Function InvokeldExistent | 51 | | Table 20 – Function SameService | 51 | | Table 21 – Primitives issued by AP-context to FSPM | 52 | | Table 22 – Primitives issued by FSPM to AP-context | 52 | | Table 23 – FSPM state table – sender transactions | | | Table 24 – FSPM state table – receiver transactions | 55 | | Table 25 – Function SelectArep | 55 | | Table 26 – Primitives issued by FSPM to ARPM | 56 | | Table 27 – Primitives issued by ARPM to FSPM | 56 | | Table 28 – Parameters used with primitives exchanged between FSPM and ARPM | | | Table 29 – QUB-FC ARPM states | 59 | | Table 30 – QUB-FC ARPM state table – sender transactions | 60 | | Table 30 – QUB-FC ARPM state table – sender transactions | | | Table 32 – Function GetArepId (Standards.iteh.ai) | 76 | | Table 33 – Function BuildFAL-PDU | 76 | | Table 34 – Function FAL_Pdu_Type. SIST EN 61158-6-8:2008
https://standards.iich.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f- | 77 | | Table 35 – Function AREPContext@heck()d/sist-en-61158-6-8-2008 | 77 | | Table 36 – Function AbortIdentifier | | | Table 37 – Function AbortReason | 77 | | Table 38 – Function AbortDetail | 77 | | Table 39 – Function StartTimer | 78 | | Table 40 – Function StopTimer | 78 | | Table 41 – Function ResetCounters | 78 | | Table 42 – Function IncrementCounter | 78 | | Table 43 – Function DecrementCounter | 78 | | Table 44 – Function GetCounterValue | 78 | | Table 45 – Primitives issued by FSPM to ARPM | 79 | | Table 46 – Primitives issued by ARPM to FSPM | 79 | | Table 47 – Parameters used with primitives exchanged between FSPM and ARPM | 79 | | Table 48 – BNU ARPM states | 81 | | Table 49 – BNU ARPM state table – sender transactions | 81 | | Table 50 – BNU ARPM state table – receiver transactions | 82 | | Table 51 – Function GetArepId () | 85 | | Table 52 – Function BuildFAL-PDU | 85 | | Table 53 – Function FAL_Pdu_Type | 85 | | Table 54 – Function AbortIdentifier | 85 | | Table 55 – Function AbortReason | 85 | | Table 56 – Function AbortDetail | 85 | |--|-----| | Table 57 – Primitives issued by FAL to ARPM | 86 | | Table 58 – Primitives issued by ARPM to FAL | 86 | | Table 59 – Parameters used with primitives exchanged between FAL and ARPM | 86 | | Table 60 – QUB-TM ARPM states | 88 | | Table 61 – QUB-TM state table - sender transactions | 88 | | Table 62 – QUB-TM state table - receiver transactions | 89 | | Table 63 – Function GetArepId () | 89 | | Table 64 – Function BuildFAL-PDU | 89 | | Table 65 – Function FAL_Pdu_Type | 89 | | Table 66 – Function ResetCounters | 90 | | Table 67 – Function IncrementCounter | 90 | | Table 68 – Function DecrementCounter | 90 | | Table 69 – Function GetCounterValue | 90 | | Table 70 – Primitives issued by ARPM to DMPM | | | Table 71 – Primitives issued by DMPM to ARPM | 92 | | Table 72 – Parameters used with primitives exchanged between ARPM and DMPM | 93 | | Table 73 – Primitives exchanged between data-link layer and DMPM | 93 | | Table 74 – DMPM state descriptions | 94 | | Table 75 – DMPM state table – sendertransactions teh.ai) | | | Table 76 – DMPM state table – receiver transactions | 98 | | Table 77 – Function PickArep SIST EN 61158-6-8:2008
https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f- | 99 | | Table 78 – Function FindAREP .15ef8501654d/sist-en-64158-6-8-2008 | 99 | | Table 79 – Function SelectNextArep | 99 | | Table 80 – Function ArepRole | 100 | | Table 81 – Function FalArHeader | 100 | | Table 82 – Function AddUcsPduHeader | 100 | | Table 83 – Function RemoveUcsPduHeader | 100 | | Table 84 – Function DILinkStatus | 100 | #### **-6-** ## INTERNATIONAL ELECTROTECHNICAL COMMISSION # INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – # Part 6-8: Application layer protocol specification – Type 8 elements ### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication. https://standards.itch.a/catalog/standards/sist/83ea56dd-6335-422f-b59f- - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other combinations may require permission from their respective intellectual-property-right holders. IEC draws attention to the fact that it is claimed that compliance with this standard may involve the use of patents as follows, where the [xx] notation indicates the holder of the patent right: Type 8: DE 197 39 297 C2 [PxC] "Automatisierungssystem und Steuervorrichtung zur transparenten Kommunikation zwischen verschiedenen Netzwerken." US 2002/0042845 A1 [PxC] "Automation System and connecting Apparatus for the Transparent Communication between two Networks." The IEC takes no position concerning the evidence, validity and scope of these patent rights.: The holders of these patent rights have assured the IEC that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holders of these patent rights are registered with the IEC. Information may be obtained from: [PxC]: Phoenix Contact GmbH & Co. KG Intellectual Property Licenses & Standards Flachsmarktstr. 8 D-32825 Blomberg, Germany Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights. 61158-6-8 © IEC:2007(E) **-7-** International Standard IEC 61158-6-8 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation. This first edition and its companion parts of the IEC 61158-6 subseries cancel and replace IEC 61158-6:2003.. This edition of this part constitutes a technical revision. This edition of IEC 61158-6 includes the following significant changes from the previous edition: - a) deletion of the former Type 6 fieldbus for lack of market relevance; - b) addition of new types of fieldbuses; - c) partition of part 6 of the third edition into multiple parts numbered -6-2, -6-3, ... The text of this standard is based on the following documents: | FDIS | Report on voting | | |--------------|------------------|--| | 65C/476/FDIS | 65C/487/RVD | | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with ISO/IEC Directives, Part 2. The committee has decided that the contents of this publication will/remain unchanged until the maintenance result date indicated on the IEC web site under http://webstore.iec.ch in the data related to the specific publication. At this date, the publication will be: reconfirmed; SIST EN 61158-6-8:2008 - withdrawn; https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f- - replaced by a revised edition, or replaced by a revised edition, or - amended. NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series. The list of all the parts of the IEC 61158 series, under the general title *Industrial communication networks – Fieldbus specifications*, can be found on the IEC web site. 61158-6-8 © IEC:2007(E) # INTRODUCTION This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC/TR 61158-1. The application protocol provides the application service by making use of the services available from the data-link or other immediately lower layer. The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer application entities (AEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes: - as a guide for implementors and designers; - for use in the testing and procurement of equipment; - as part of an agreement for the admittance of systems into the open systems environment; - as a refinement to the understanding of time-critical communications within OSI. This standard is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this standard together with other standards positioned within the OSI or fieldbus reference models, otherwise incompatible systems may work together in any combination. # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN 61158-6-8:2008</u> https://standards.iteh.ai/catalog/standards/sist/83ea56dd-6335-422f-b59f-15ef8501654d/sist-en-61158-6-8-2008 - 8 - # INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – # Part 6-8: Application layer protocol specification – Type 8 elements ## 1 Scope #### 1.1 General The fieldbus application layer (FAL) provides user programs with a means to access the fieldbus communication environment. In this respect, the FAL can be viewed as a "window between corresponding application programs." This standard provides common elements for basic time-critical and non-time-critical messaging communications between application programs in an automation environment and material specific to Type 8 fieldbus. The term "time-critical" is used to represent the presence of a time-window, within which one or more specified actions are required to be completed with some defined level of certainty. Failure to complete specified actions within the time window risks failure of the applications requesting the actions, with attendant risk to equipment, plant and possibly human life. This standard specifies interactions between remote applications and defines the externally visible behavior provided by the Type 8 fieldbus application layer in terms of - a) the formal abstract syntax defining the application layer protocol data units conveyed between communicating application entities; - b) the transfer syntax defining encoding rules that are applied to the application layer protocol data units; 15ef8501654d/sist-en-61158-6-8-2008 - c) the application context state machine defining the application service behavior visible between communicating application entities; - d) the application relationship state machines defining the communication behavior visible between communicating application entities. The purpose of this standard is to define the protocol provided to - 1) define the wire-representation of the service primitives defined in IEC 61158-5-8, and - 2) define the externally visible behavior associated with their transfer. This standard specifies the protocol of the Type 8 fieldbus application layer, in conformance with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI application layer structure (ISO/IEC 9545). ## 1.2 Specifications The principal objective of this standard is to specify the syntax and behavior of the application layer protocol that conveys the application layer services defined in IEC 61158-5-8. A secondary objective is to provide migration paths from previously-existing industrial communications protocols. It is this latter objective which gives rise to the diversity of protocols standardized in the IEC 61158-6 series. ### 1.3 Conformance This standard does not specify individual implementations or products, nor does it constrain the implementations of application layer entities within industrial automation systems.