

Edition 1.0 2015-04

TECHNICAL REPORT

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00

CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

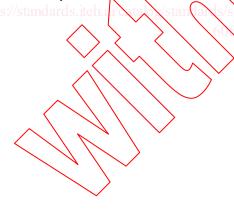
The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications, Just Published details all new publications released. Available online and also once a month by email.

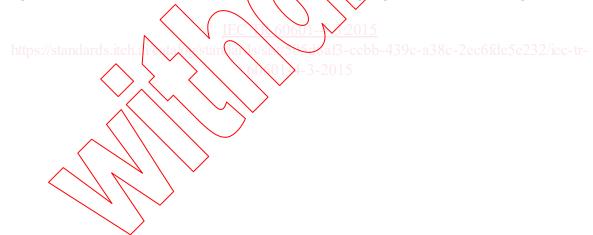

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

More than 60 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.


Edition 1.0 2015-04

TECHNICAL REPORT

Medical electrical equipment -

Part 4-3: Guidance and interpretation – Considerations of unaddressed safety aspects in the third edition of IEC 60601-1 and proposals for new requirements

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 11.040 ISBN 978-2-8322-2613-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWORD		5
IN	TRODUCTI	ION	7
1	Scope ar	nd object	8
	1.1 Sco	ope	8
		iect	
2		, ve references	
3		endations	
-		mplate used for recommendations prepared by SC 62A/WG 14	
	3.2.101	Commendation sheets	10
	3.2.102	Pollution degree for MOPP Transients on d.c. mains Altitude factor for DEFIBRILLATION-PROOF APPLIED PARTS	10
	3.2.103	Transients on d.c. mains	11
	3.2.104	Altitude factor for DEFIBRILLATION-PROOF APPLIED PARTS	12
	3.2.105	Altitude factor for DEFIBRILLATION-PROOF APPLIED PARTS Defibrillation energy protection for MOOP / MOPR	13
	3.2.106	Overvoltage categories III and IV	13
	3.2.107	Pollution degree related to different micro/macro environments	13
	3.2.108	Warnings versus ALARM SIGNALS	14
	3.2.109	Single Y1 capacitor for MOPP	14
	3.2.110	Warnings versus ALARM SIGNALS. Single Y1 capacitor for MOPP. WORKING VOLTAGE > 14 149 V peak	15
	3.2.111	CREEPAGE DISTANCE and AIR GLEARANCE for dental equipment	
	3.2.112	Short circuiting of one constituent part of DOUBLE INSULATION	
	3.2.113	Instability in transport position	
	3.2.114	When to conduct leakage current tests after humidity preconditioning 2/100	
		treatment	
	3.2.115	DEFIBRILLATION PROOF TYPE B APPLIED PARTS	
	3.2.116	Instability excluding transport position	
	3.2.117	DIELECTRIC STRENGTH OF two serial MOPP barrier parts	
	3.2.118	Overheating transformer	19
	3.2.119	Test equipment for recurrent tests according to IEC 62353 testing used within IEC 60601-1 type approval testing	20
	3.2.120	Tolerances of apparatus	
	3.2.121	FUNCTIONAL EARTH CONDUCTOR and ESSENTIAL PERFORMANCE	
	3.2.121	A.c. motors	
	3.2.123	Operational insulation	
	3.2.124	WORKING VOLTAGE measurement	
	3.2.125	Defibrillation test	
	3.2.126	Oil containers for moving parts	
	3.2.127	PERMANENTLY INSTALLED ME EQUIPMENT IN the HOME HEALTHCARE	
	0.22.	ENVIRONMENT	27
	3.2.128	Polystyrene plate for LEAKAGE CURRENT tests	30
	3.2.129	Push buttons	31
	3.2.130	Temperature limit at the ENCLOSURE in SINGLE FAULT CONDITION	31
	3.2.131	Optic coupler requirements	33
	3.2.132	Eye-verification of tester before legibility test	35
	3.2.133	End stops to prevent overtravel	36
	3.2.134	MOPP barrier with low WORKING VOLTAGE r.m.s. and high	
		WORKING VOLTAGE peak	37

3.2.135	Labeling: spare parts vs. detachable parts vs. ACCESSORIES	38
3.2.136	Protective earth impedance of ME SYSTEM >200 m Ω	41
3.2.137	Ball pressure test	42
3.2.138	Magnesium alloy ENCLOSURE	43
3.2.139	Instability with initial movement	44
3.2.140	Ball pressure test	45
3.2.141	DIELECTRIC STRENGTH test values	47
3.2.142	SECONDARY CIRCUITS	48
3.2.143	LEAKAGE CURRENTS in SINGLE FAULT CONDITION and during component faults	48
3.2.144	Impedance of a PROTECTIVE EARTH CONDUCTOR within a DETACHABLE POWER SUPPLY CORD	49
3.2.145	Time delay of the 100 VA limit Test voltage multiplied by factor 1,6	50
3.2.146	Test voltage multiplied by factor 1,6	51
3.2.147	Overflow, spillage,	51
3.2.148	DIELECTRIC STRENGTH test of transformers without accessible frame	
3.2.149	Expected voltage on SIP/SOPS	52
3.2.150	Flammability rating for transformer bobbin	53
3.2.151	COMPONENT WITH HIGH-INTEGRITY CHARACTERISTICS	54
3.2.152	Peak and r.m.s. WORKING VOLTAGES	55
3.2.153	Critical components	56
3.2.154	LEAKAGE CURRENT test for ME EQUIPMENT with multiple APPLIED PARTS	56
3.2.155	DIELECTRIC STRENGTH test value for extruded and spirally wrapped multi-	
	layer wires	
3.2.156	DIELECTRIC STRENGTH test after thermal cycling test	
3.2.157	Required MOOP values higher than MOPP values	58
3.2.158	Optocouplers all all all all all all all all all al	
3.2.159	Impact test	
3.2.160	Spillage test in Normal CONDITION and in SINGLE FAULT CONDITION	
3.2.161	TYPE B APPLIED PART connected to ACCESSIBLE PARTS	
3.2.162	Current/power labeling	
3.2.163	Separate power supply part of ME EQUIPMENT OF ME SYSTEM	
3.2.164	Specification of the allowed power supply	63
3.2.165	Mains transpents for opposite polarity on the secondary side or battery pole to pole barrier	
3.2.166	Keep dry and umbrella symbol	
3.2.167	MOBILE and STATIONARY ME EQUIPMENT with wheels	66
3.2.168	Varistors installed in the MAINS PART	67
3.2.169	Using Y2 capacitors for MOPP	67
3.2.170	Overtravel end stops – specification of the speed	68
3.2.171	CREEPAGE DISTANCE and AIR CLEARANCE between input and output of fuse contacts	69
3.2.172	Examples of SINGLE FAULT CONDITION	69
3.2.173	Examples of ME SYSTEMS	70
3.2.174	Cross sectional area of POWER SUPPLY CORD for rated input current > 63 A	70
3.2.175	Biocompatibility for quasi APPLIED PARTS	71
3.2.176	Floating reference earth	71
3.2.177	SINGLE FAULT CONDITION IN OXYGEN RICH ENVIRONMENT	72
3 2 178	Laser requirements	74

3.2.179	Flammability rating of insulated wires	74
3.2.180	Infrared lamps	75
3.2.181	Identification of internal fuses	76
3.2.182	Chargers for ME EQUIPMENT used at home	77
3.2.183	CLASS II ME EQUIPMENT with FUNCTIONAL EARTH CONDUCTOR	78
3.2.184	Symbol D2-2 on MSO	78
3.2.185	PATIENT leads connectors	79
3.2.186	Rationale for IP2X	80
3.2.187	Battery – limited power	80
3.2.188	TYPE B APPLIED PART separated from ACCESSIBLE PARTS	81
3.2.189	Protective earth test >25A	81
3.2.190	Protective earth test >25A	82
3.2.191	The SIP/SOP pin to earth TOUCH CURRENT	82
3.2.192		84
3.2.193	MAINS VOLTAGE ON APPLIED PART	85
Annex A (infor 62A/WG 14	mative) Overview of the recommendations developed by IEC/SC	86
Bibliography		91
Table A.1 – Ci	ross-reference of recommendations by subclause of IEC 60601-1:2005	
and IEC 6060	1-1:2005/AMD1:2012 (1 of 5)	86
	(standards ith.ai)	
	IEC \\ 60601-\sqrt{2015}	
	irds.iteh.a (145) stanta ds/six 355 at3-ccbb-439c-a38c-2ec6fde5e232/ii	
	60 01 4-3-2015	
^		
	''	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL ELECTRICAL EQUIPMENT -

Part 4-3: Guidance and interpretation – Considerations of unaddressed safety aspects in the third edition of IEC 60601-1 and proposals for new requirements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attack to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 60601-4-3, which is a technical report, has been prepared by subcommittee 62A: Common aspects of electrical equipment used in medical practice, of IEC technical committee 62: Electrical equipment in medical practice.

-6-

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
62A/951/DTR	62A/973A/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

Terms used throughout this technical report that have been defined in Clause 3 of IEC 60601-1:2005 and IEC 60601-1:2005/AMD 1:2012 are printed in SMALL CAPITALS.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed,
- · withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this technical report may be issued at a later date.

INTRODUCTION

At the Sydney meeting in August 1994, IEC subcommittee (SC) 62A established a procedure under which working group (WG) 14 would develop recommendations regarding problems of interpretation or application of IEC 60601-1. WG 14 is made up of experts with particular expertise in testing according to the requirements of IEC 60601-1. Many of the experts on WG 14 are employed by test laboratories with a long history of applying IEC 60601-1 to MEDICAL ELECTRICAL EQUIPMENT. While the National Committee members of SC 62A nominate these experts, their recommendations were not to be formally adopted through any official voting procedure. To reinforce this process, the Subcommittee specifically directed that the following note appear on every page of the resulting informational circular:

IMPORTANT NOTE: Per the 62A decision at Sydney (see RM3755/SC62A, August 1994), the 62A Secretary is circulating this recommendation, prepared by 62A/WG 14, regarding problems of interpretation or application of IEC 60601-1 to all P-Member NCs.

This recommendation/interpretation is the result of considerations by a group of nominated experts and has not been formally adopted through any National Committee voting procedure. Distribution is only for information.

At the November 2000 meeting of SC 62A in Tokyo, the subcommittee discussed ways and means for achieving a wider distribution of the WG 14 recommendations. At the conclusion of this discussion, the subcommittee instructed the Secretariat to develop a technical report (TR) based on the published recommendations of WG 14. This technical report is intended to convey the results of WG 14's work to interested parties such as MANUFACTURERS and test laboratories while retaining the informative nature of the material.

This first edition of IEC TR 60601-4-3 contains 93 recommendations, numbered 101 to 193. All these recommendations are based upon IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012.

The numbering starts with 101 instead of just 1 to ensure that these WG 14 recommendations (101 to 193) will not accidentally be confused with previous issued WG 14 recommendations 1 to 63, which are based on the second edition of IEC 60601-1 and published in IEC TR 62296.

This technical report may be amended from time to time as WG 14 prepares additional recommendations.

MEDICAL ELECTRICAL EQUIPMENT

Part 4-3: Guidance and interpretation – Considerations of unaddressed safety aspects in the third edition of IEC 60601-1 and proposals for new requirements

1 Scope and object

1.1 Scope

This technical report contains a series of recommendations developed by an expert working group of IEC subcommittee 62A in response to questions of interpretation of the third edition of IEC 60601-1.

This technical report is primarily intended to be used by:

- MANUFACTURERS of MEDICAL ELECTRICAL EQUIPMENT;
- test laboratories and others responsible for assessment of compliance with IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012, and
- those developing subsequent editions of IEC 60601-1.

The recommendations in the first edition of EC/TR 62296 were considered in preparing the third edition of IEC 60601-1. Similarly it is expected that these recommendations within IEC 60601-4-3 will be considered when preparing a future revision of IEC 60601-1.

1.2 Object

The object of this technical report is to make the recommendations/interpretations developed by the experts in IEC/SC 62A/WG 14 available to those interested in the application of the third edition of IEC 60601-1.

The reader is reminded that, although a majority of the National Committee members of IEC/SC 62A have approved publication of this technical report, the contents remain the opinion of the expert members of WG 14. These recommendations interpretations are the result of considerations by this group of nominated experts and have not been formally adopted through any National Committee voting procedure. Distribution is only for information.

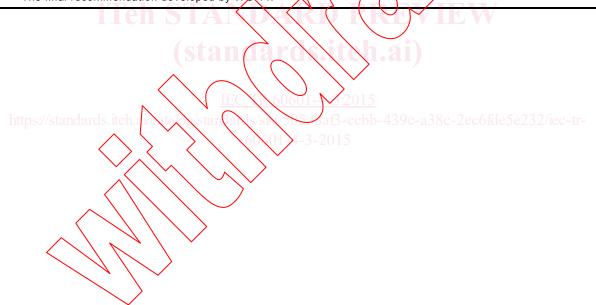
2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60601-1:2005, Medical electrical equipment – Part 1: General requirements for basic safety and essential performance IEC 60601-1:2005/AMD1:2012

IEC 60601-1-8:2006, Medical electrical equipment – Part 1-8: General requirements for basic safety and essential performance – Collateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems IEC 60601-1-8:2006/AMD1:2012

IEC 60601-1-11:2010, Medical electrical equipment – Part 1-11: General requirements for basic safety and essential performance – Collateral standard: Requirements for medical electrical equipment and medical electrical systems used in the home healthcare environment


3 Recommendations

3.1 Template used for recommendations prepared by SC 62A/WG 14

The recommendations in this Technical Report are presented in tabular form using the following table structure.

WG 14 recommendation number	NNN ^{a)}
Requirement, clause/ subclause number(s) b)	
Source/problem ^{c)}	
Discussion/comment d)	
Submitter proposed recommendation ^{e)}	
WG 14 recommendation ^{f)}	

- a) The numbering of the recommendations in the Technical Report starts with 101 instead of just 1 to ensure that these WG 14 recommendations will not accidentally be confused with previously issued WG 14 recommendations 1 to 63, which are based on the second edition of IEC 60601-1
- b) The clause, subclause or requirement to which the question is related. If no standard is listed, the reference is to IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012.
- c) A description of the problem as submitted to WG 14.
- d) Additional discussion or commentary provided by the submitter.
- e) The submitter's proposed resolution to the problem, if one exists.
- f) The final recommendation developed by W 6 14.

3.2.101 Total Patient Leakage current of a me system

WG 14 recommendation number	101
Requirement, clause/ subclause number(s)	16.6.3
Source/problem	There is no measuring circuit or measurement method given in IEC 60601-1 for measurement of the total PATIENT LEAKAGE CURRENT of ME SYSTEMS.
	Input: Patient can be simultaneously monitored for a physiological parameter by the ME EQUIPMENT "1" and for other physiological parameter by the ME EQUIPMENT "2". The ME EQUIPMENT "1" and "2" belong to the same ME SYSTEM. The total PATIENT LEAKAGE CURRENT of the ME SYSTEM in question should be measured, but how should the measurement be performed?
Discussion/comment	-
Submitter proposed recommendation	-
WG 14 recommendation	Q1: Shall the total PATIENT LEAKAGE CURRENT OF the WE SYSTEM be measured "from" and "to" all PATIENT CONNECTIONS of all APPLIED PARTS (in the ME SYSTEM) of the same type connected together? NOTE Those APPLIED PARTS belong to several individual ME EQUIPMENTS of the ME SYSTEM.
iTeh STA (sta	WG 14 answer to Q1: No, measure only 'from' (i.e. to earth) not "to" all PATIENT CONNECTIONS of the same type of APPLIED PARTS of the ME SYSTEM connected together. Reason: SINGLE FAULT CONDITION tests with SUPPLY MAINS on APPLIED PART OF With SUPPLY MAINS on SIP/SOP (represent "to" measurement) are N/A for a ME SYSTEM, see subclauses 16.1 and 16.6.3.
https://standards.iteh.avo.tal/stan	Q2. Is it adequate that the total PATIENT LEAKAGE CURRENT of the ME SYSTEM in question is measured according to subclause 8.7.4.7 h) separately for each individual ME EQUIPMENT belonging to the ME SYSTEM?
	WG 14 answer to Q2: No, this is not adequate. Individual tests of each item of ME EQUIPMENT or non-ME EQUIPMENT is anyway required and those individual measurements do not replace the ME SYSTEM tests of the total PATIENT LEAKAGE CURRENT. In addition:
	It is not explicitly written in IEC 60601-1, but WG 14 recommends measuring the total PATIENT LEAKAGE CURRENT in an ME SYSTEM by combining all APPLIED PARTS of the same type of the whole ME SYSTEM together and measuring against earth. See also Annex A, subclause 16.6.3.

3.2.102 Pollution degree for MOPP

WG 14 recommendation number	102
Requirement, clause/ subclause number(s)	8.9, 8.9.1.1
Source/problem	IEC 60601-1 does not include requirements for MOPP in regards to pollution degrees 1 and 3.
Discussion/comment	There are no clear requirements in regards to pollution degree relative to MOPP.
Submitter proposed recommendation	Use Table 12 for MOPP as provided for pollution degrees 1, 2 and 3. NOTE Pollution degree 4 is not allowed as a MOP.
WG 14 recommendation	It is recommended to use Table 12 for MOPP for pollution degrees 1, 2 and 3. NOTE Pollution degree 4 is not allowed.

3.2.103 Transients on d.c. mains

WG 14 recommendation number	103
Requirement, clause/ subclause number(s)	8.9, 8.9.1.1
Source/problem	Transients on d.c. mains (e.g. ambulance power source).
Discussion/comment	The tables are based on a.c. mains transients. What about ME EQUIPMENT that operates from a d.c. mains such as an ambulance?
Submitter proposed recommendation	Apply Tables 12 through 16 as provided for ME EQUIPMENT connected to the d.c. mains.
WG 14 recommendation	It is recommended to apply Tables 12 through 16 for ME EQUIPMENT connected to the d.c. mains. Examples: a) Pure external battery power: no MAINS FRANSIENT VOLTAGE exists. b) If the external d.c. power is derived out of an a.c. MAINS VOLTAGE (e.g. 230 V a.c.): use the concept already described in IEC 60601-1. c) If the external d.c. power is locally generated by a local generator (i.e. not derived out of MAINS VOLTAGE 230 V a.c.), e.g. by a generator of the ambulance, then use transient level Table 10, line 50 V r.m.s. for primary d.c. circuit.

3.2.104 Altitude factor for Defibrillation-Proof applied Parts

WG 14 recommendation number	104
Requirement, clause/ subclause number(s)	8.9, 8.9.1.1
Source/problem	Use of AIR CLEARANCE altitude multiplication factor for DEFIBRILLATION-PROOF APPLIED PARTS
Discussion/comment	Should the AIR CLEARANCE multiplication factor based on altitude (reference Table 8) be used for subclause 8.9.1.15?
	It was mentioned that IEC 60601-2-4 could be referenced, but many APPLIED PARTS marked DEFIBRILLATION-PROOF are not in themselves defibrillators. The group felt that since the AIR CLEARANCE multiplication factor pertains to transients, it should apply.
	DEFIBRILLATION-PROOF TYPE CF APPLIED PARTS testing is conducted in IEC 60601-1 for three primary reasons, which include:
	to ensure that the defibrillator energy at APPLIED PARTS does not transfer excessive energy to parts of ME-EQUIPMENT that OPERATORS or other persons could touch during cardiac defibrillation;
	2) to ensure that the ME EQUIPMENT does not lose more than 10 % of the total defibrillation energy across a 100 Ω resistor (see Figure 11);
	to ensure that the ME EQUIPMENT remains functional (cardiac defibrillation recovery) within a specified period of time;
iTeh STA (sta	As item 1 above directly relates to the CREEPAGE DISTANCE and AIR CLEARANCE requirement for subclause 8.9.1.15 and is relative to the protection of OPERATORS rather than PATIENTS, the AIR CLEARANCE multiplication factors for altitude would be taken from Table 8 column heading "Multiplication factor for MOOP". However, these multiplication factors cause a large increase in the AIR CLEARANCE and it is doubtful that this is really necessary.
Submitter proposed recommendation	Apply the AIR CLEARANCE multiplication factor based on altitude to subclause 8.9.1.15. Also, bump the CREEPAGE DISTANCE requirements to equal those of the AIR CLEARANCE as is done throughout this edition of VEC 60601-1.
WG 14 recommendation	T) For DEFIBRILLATION-PROOF APPLIED PARTS, a minimum of 4,0 mm CREEPAGE DISTANCE and 4,0 mm AIR CLEARANCE are required.
	Por use in higher altitudes, the AIR CLEARANCE needs be corrected by a multiplication factor. According to Figure A.12 the MANUFACTURER has the choice to use MOPP instead of MOOP. The MOPP multiplication factor is less than the MOOP multiplication factor. The MOPP multiplication factor is sufficient.
	3) Figure A.12 should be normative. This should be implemented in a future amendment of IEC 60601-1.
	CREEPAGE DISTANCE requirements should be at least equal to those of the AIR CLEARANCE.

3.2.105 Defibrillation energy protection for MOOP / MOPP

WG 14 recommendation number	105
Requirement, clause/ subclause number(s)	8.9, 8.9.1.1
Source/problem	APPLIED PART separation MOP type.
Discussion/comment	Is APPLIED PART separation, for example in subclause 8.9.1.15 for DEFIBRILLATION-PROOF APPLIED PARTS, considered a MOPP or MOOP? What about MAXIMUM MAINS VOLTAGE ON APPLIED PARTS?
	Where the separation provides MOPP, such as during MAXIMUM MAINS VOLTAGE on APPLIED PARTS or DEFIBRILLATION-PROOF APPLIED PARTS and when measuring energy from other APPLIED PARTS, then that is a MOPP, whereas when the separation provides MOOP, such as DEFIBRILLATION-PROOF APPLIED PARTS and when verifying the energy at the ENCLOSURE or at SIP/SOP, then that is a MOOP.
Submitter proposed recommendation	Consider how the separation is being used. If for MOOP then use the requirements for MOOP, if for the MOPP then use the MOPP.
WG 14 recommendation	Consider how the separation is being used. If for MOOP then use the requirements for MOOP, if for MOPP then use the requirements for MOPP. However Figure A.12 should be regarded as normative, consequently MOPP requirements are considered as satisfying both MOOP and MOPP requirements.

3.2.106 Overvoltage categories III and IV

WG 14 recommendation number	106
Requirement, clause/ subclause number(s)	8.9, 8.9 1.1
Source/problem	ME EQUIPMENT connected to overvoltage categories other than II.
Discussion/comment https://standards.iteh.ac.ta/stan	TEC 6060 1 tables are based on overvoltage category II except MOOR secondary is overvoltage category I under certain conditions as defined in subclause 8.9.1.12. What about overvoltage categories I, IN, IV? ME EQUIPMENT meant for connection to another overvoltage category will need to meet requirements outside of the tables provided in IEC 60601-1.
Submitter proposed recommendation	Use IEC 60664 or IEC 61010 for requirements of CREEPAGE DISTANCE, AIR CLEARANCE and DIELECTRIC STRENGTH for ME EQUIPMENT connected to SUPPLY MAINS of overvoltage category III or IV.
WG 14 recommendation	Subclause 8.9.1.11 deals with this issue, therefore, there is no need for a WG 14 recommendation.

3.2.107 Pollution degree related to different micro/macro environments

WG 14 recommendation number	107
Requirement, clause/ subclause number(s)	8.9 8.9.1.1
Source/problem	Application of pollution degree classifications.
Discussion/comment	Pollution degree initially is a micro environment exactly at the barrier concerned. However there is a relation between the micro and macro environments under certain conditions.
	Normally one environment is applied. Based on the design of the ME EQUIPMENT or ME SYSTEM, more than one pollution degree can be applicable to different parts.
Submitter proposed recommendation	-
WG 14 recommendation	The answer can be found in IEC 60601-1:2005/AMD1:2012, Annex M.