

Edition 2.0 2016-01

INTERNATIONAL STANDARD

Process management for avionics Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment

> <u>IEC 62396-1:2016</u> https://standards.iteh.ai/catalog/standards/sist/b92a9853-63be-411f-9401-50bae964aa22/iec-62396-1-2016

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2016 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number) text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

ished IEC Customer Service Centre - webstore.iec.ch/csc

details all new publications released. Available online and 96 if you wish to give us your feedback on this publication or also once a month by emailtps://standards.iteh.ai/catalog/standardneed.further assistance, please contact the Customer Service 50bae964aa22/iec-Centre: cso@iec.ch.

Edition 2.0 2016-01

INTERNATIONAL STANDARD

Process management for avionics D Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment

> <u>IEC 62396-1:2016</u> https://standards.iteh.ai/catalog/standards/sist/b92a9853-63be-411f-9401-50bae964aa22/iec-62396-1-2016

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 03.100.50; 31.020; 49.060

ISBN 978-2-8322-3078-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWC	RD	6
IN	TRODU	ICTION	8
1	Scop	e	9
2	Norm	native references	9
3	Term	is and definitions	9
4	Abbr	eviations and acronyms	. 18
5	Radi	ation environment of the atmosphere	.21
	5.1	Radiation generation	.21
	5.2	Effect of secondary particles on avionics	.21
	5.3	Atmospheric neutrons	.21
	5.3.1	General	.21
	5.3.2	Atmospheric neutrons energy spectrum and SEE cross-sections	.22
	5.3.3	Altitude variation of atmospheric neutrons	.24
	5.3.4	Latitude variation of atmospheric neutrons	.25
	5.3.5	Thermal neutrons within aircraft	.27
	5.4	Secondary protons	. 27
	5.5	Other particles	. 28
	5.6	Solar enhancements I ANDARD FREVIEW	.29
	5.7	High altitudes greater than 60 000 ft (18 290 m) and	.29
6	Effec	ts of atmospheric radiation on avionics	.30
	6.1	Types of radiation effects <u>IEC.62396-12016</u>	. 30
	6.2	Single event/effects (SEEs) talog/standards/sist/b92a9853-63be-411f-9401-	. 30
	6.2.1	General	. 30
	6.2.2	Single event upset (SEU)	.31
	6.2.3	Multiple bit upset (MBU) and multiple cell upset (MCU)	.31
	6.2.4	Single effect transients (SEIs)	.33
	6.2.5	Single event latch-up (SEL)	.34
	6.2.6	Single event functional interrupt (SEFI)	.34
	6.2.7	Single event burnout (SEB)	.34
	6.2.8	Single event gate rupture (SEGR)	.35
	6.2.9	Single event induced hard error (SHE)	.35
	0.2.1	Tatal ioniaing data (TID)	. აე ან
	0.3		. 30
7	Guid	ance for system designs	. 37
'	7 1		. 37
	7.1	System design	. 37
	73	Hardware considerations	. 4 0
	7.0	Electronic devices characterisation and control	42
	741	Rigour and discipline	42
	742	Level A systems	. 42
	7.4.3	Level B	.42
	7.4.4	Level C	.43
	7.4.5	Levels D and E	.43
8	Dete	rmination of avionics single event effects rates	.43

8.1	Main single event effects	43
8.2	Single event effects with lower event rates	44
8.2.1	Single event burnout (SEB) and single event gate rupture (SEGR)	44
8.2.2	Single event transient (SET)	
8.2.3	Single event hard error (SHE)	45
8.2.4	Single event latch-up (SEL)	
8.3	Single event effects with higher event rates – Single event upset data	
8.3.1		
8.3.2	SEU cross-section	
8.3.3	Proton and neutron beams for measuring SEU cross-sections	
0.3.4	SEU per bit cross section trends and other SEE in DPAMs	
0.J.J Q /	Calculating SEE rates in avionics	
0.4 8 5	Calculation of availability of full redundancy	
851	General	54
852	SELL with mitigation and SET	54
8.5.3	Firm errors and faults	
9 Cons	iderations for SEE compliance	
Q 1		55
9.1	Confirm the radiation environment for the avionics application	55
9.3	Identify the system development assurance level	55
9.4	Assess preliminary electronic equipment design for SEE	
9.4.1	Identify SEE-sensitive electronic components	
9.4.2	Quantify SEE rates	
9.5	Verify that the system development assurance level requirements are m	et
	for SEE	55
9.5.1	Combine SEE rates for the entire system	55
9.5.2	Management of electronic components control and dependability	56
9.6	Corrective actions	
Annex A (informative) Thermal neutron assessment	57
Annex B (informative) Methods for calculating SEE rates in avionics electronics	58
B.1	Proposed in-the-loop system test – Irradiating avionics LRU in	
	neutron/proton beam, with output fed into aircraft simulation computer	
B.2	Irradiating avionics LRU in a neutron/proton beam	
B.3	Utilising existing SEE data for specific electronic components on LRU	
B.3.1	Neutron proton data	
D.J.Z	Applying generic SEE data to all electronic components on LPU	
D.4 B.5	Apprying generic SEE data to an electronic components on LRO	01
B.S B.6	Component level lacer simulation of single event attacts	
	Component level laser simulation of single event effects	63
Annex C. (Component level laser simulation of single event effects Determination of SEU rate from service monitoring	63
Annex C (Component level laser simulation of single event effects Determination of SEU rate from service monitoring informative) Review of test facility availability	63 65
Annex C (C.1	Component level laser simulation of single event effects Determination of SEU rate from service monitoring informative) Review of test facility availability Facilities in the USA and Canada	63 65 65
Annex C (C.1 C.1.1	Component level laser simulation of single event effects Determination of SEU rate from service monitoring informative) Review of test facility availability Facilities in the USA and Canada Neutron facilities Proton facilities	63 65 65 65 65
Annex C (C.1 C.1.1 C.1.2	Component level laser simulation of single event effects Determination of SEU rate from service monitoring informative) Review of test facility availability Facilities in the USA and Canada Neutron facilities Proton facilities Laser facilities	63 65 65 65 66 66
Annex C (C.1 C.1.1 C.1.2 C.1.3 C.2	Component level laser simulation of single event effects Determination of SEU rate from service monitoring informative) Review of test facility availability Facilities in the USA and Canada Neutron facilities Proton facilities Laser facilities Facilities in Europe	
Annex C (C.1 C.1.1 C.1.2 C.1.3 C.2 C.2 1	Component level laser simulation of single event effects Determination of SEU rate from service monitoring informative) Review of test facility availability Facilities in the USA and Canada Neutron facilities Proton facilities Laser facilities Facilities in Europe Neutron facilities	63 65 65 65 66 68 69 69 69
Annex C (C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2	Component level laser simulation of single event effects Determination of SEU rate from service monitoring informative) Review of test facility availability Facilities in the USA and Canada Neutron facilities Proton facilities Facilities in Europe Neutron facilities Proton facilities Proton facilities	63 65 65 65 66 68 69 69 71

Annex D (informativity with altitude and l	tive) Tabular description of variation of atmospheric neutron flux latitude	73
Annex E (informat	tive) Consideration of effects at higher altitudes	75
Annex F (informat	tive) Prediction of SEE rates for ions	80
Annex G (information atmospheric neutron	ative) Late news as of 2014 on SEE cross-sections applicable to the	83
G 1 SEE cro	oss-sections key to SEE rate calculations	83
G.2 Limitati	ions in compiling SEE cross-section data	83
G.3 Cross-s	section measurements (figures with data from public literature)	84
G.4 Conser	vative estimates of SEE cross-section data	84
G.4.1 Ge	eneral	84
G.4.2 Sir	ngle event upset (SEU)	85
G.4.3 Mu	ultiple cell upset (MCU)	87
G.4.4 Sir	ngle event functional interrupt (SEFI)	88
G.4.5 Sir	ngle event latch-up (SEL)	89
G.4.6 Sir	ngle event transient (SET)	91
G.4.7 Sir	ngle event burnout (SEB)	92
Annex H (information neutron cross-sec	Itive) Calculating SEE rates from non-white (non-atmospheric like) ctions for small geometry electronic components	94
H.1 Energy	[,] thresholds	94
H.2 Nomina	al neutroc fluxesTANDARD PREVIEW	94
H.3 Calcula geomet	ating event rates using non-atmospheric like cross-sections for small try electronic devices that the section of the section o	95
Bibliography	•	96
	<u>IEC 62396-1:2016</u> https://standards.iteb.ai/catalog/standards/sist/b02a0853_63ba_411f.0401	
Figure 1 – Energy	y spectrum of atmospheric neutrons6at 40 (000 ft (12 160 m), latitude	22
Figure 2 – Model	of the atmospheric neutron flux variation with altitude (see Annex D)	
Figure 3 – Distribu	ution of vertical rigidity cut-offs around the world	26
Figure 4 – Model	of atmospheric neutron flux variation with latitude	26
Figure 5 – Energy	v spectrum of protons within the atmosphere	28
Figure 6 – System	n safaty assessment process	20 38
Figure 7 SEE in	a relation to system and LDL offect	40
Figure 7 – SEE III	an of DAM CELL cross section of function of neutron/proton energy	40
Figure 8 – Variatio	on of RAM SEU cross-section as function of neutron/proton energy	48
Figure 9 – Neutro	on and proton SEU bit cross-section data	49
Figure 10 – SEU o	cross-section in SRAMs as function of the manufacture date	51
Figure 11 – SEU o	cross-section in DRAMs as function of manufacture date	52
Figure E.1 – Integ for cut-off rigiditie	gral linear energy transfer spectra in silicon at 100 000 ft (30 480 m) es (R) from 0 GV to 17 GV	76
Figure E.2 – Integ cut-off rigidities (<i>k</i>	gral linear energy transfer spectra in silicon at 75 000 ft (22 860 m) for <i>R</i>) from 0 to 17 GV	76
Figure E.3 – Integ cut-off rigidities (<i>I</i>	gral linear energy transfer spectra in silicon at 55 000 ft (16 760 m) for	77
Figure E.4 – Influe	<i>R</i>) from 0 GV to 17 GV	
	<i>R</i>) from 0 GV to 17 GV ence of solar modulation on integral linear energy transfer spectra in) ft (45 720 m) for cut-off rigidities (<i>R</i>) of 0 GV and 8 GV	77
	 R) from 0 GV to 17 GV ence of solar modulation on integral linear energy transfer spectra in 0 ft (45 720 m) for cut-off rigidities (R) of 0 GV and 8 GV ence of solar modulation on integral linear energy transfer spectra in 	77

Figure E.6 – Calculated contributions from neutrons, protons and heavy ions to the SEU rates of the Hitachi-A 4 Mbit SRAM as a function of altitude at a cut-off rigidity (R) of 0 GV	79
Figure E.7 – Calculated contributions from neutrons, protons and heavy ions to the SEU rates of the Hitachi-A 4 Mbit SRAM as a function of altitude at a cut-off rigidity (R) of 8 GV	79
Figure F.1 – Example differential LET spectrum	81
Figure F.2 – Example integral chord length distribution for isotropic particle environment	81
Figure G.1 – Variation of the high energy neutron SEU cross-section per bit as a function of electronic device feature size for SRAMs and SRAM arrays in microprocessors and FPGAs	85
Figure G.2 – Variation of the high energy neutron SEU cross-section per bit as a function of electronic device feature size for DRAMs	86
Figure G.3 – Variation of the high energy neutron SEU cross-section per electronic device as a function of electronic device feature size for NOR and NAND type flash memories	87
Figure G.4 – Variation of the MCU/SBU percentage as a function of feature size based on data from many researchers in SRAMs [43, 45]	88
Figure G.5 – Variation of the high energy neutron SEFI cross-section in DRAMs as a function of electronic device feature size	89
Figure G.6 – Variation of the high energy neutron SEFDcross-section in microprocessors and FPGAs as a function of electronic device feature size	90
Figure G.7 – Variation of the high energy neutron single event latch-up (SEL) cross- section in CMOS devices (SRAMs, processors) as a function of electronic device feature size	91
Figure G.8 – Single event burnout (SEB) cross-section in power electronic devices (400 V to 1 200 V) as a function of drain-source voltage (VDS)	92
Table 1 – Nomenclature cross reference	39
Table B.1 – Sources of high energy proton or neutron SEU cross-section data	60
Table B.2 – Some models for the use of heavy ion SEE data to calculate proton SEE data data	61
Table D.1 – Variation of 1 MeV to 10 MeV neutron flux in the atmosphere with altitude	73
Table D.2 – Variation of 1 MeV to 10 MeV neutron flux in the atmosphere with latitude	74
Table G.1 – Information relevant to neutron-induced SET	92
Table H.1 – Approximate SEU energy thresholds for SRAM-based devices	94
Table H.2 – Neutron fluxes above different energy thresholds (40 000 ft, latitude 45°)	94

- 6 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROCESS MANAGEMENT FOR AVIONICS – ATMOSPHERIC RADIATION EFFECTS –

Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. TANDARD PREVIEW
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity. DEC2National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62396-1 has been prepared by IEC technical committee 107: Process management for avionics.

This second edition cancels and replaces the first edition published in 2012. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

 a) removed, in Clause 7 related to system design, reference to level A Type I and Type II (system and references). As Clause 7 is now for guidance, "shall" statements have been changed to "should" and in 9.5.2 the requirement for electronic component management is clarified;

- b) all current definitions included in Clause 3 are those used within the IEC 62396 family of documents;
- c) incorporated in Annex G related to new technology or latest news reference to some new papers and issues which have appeared since 2011;
- d) solar flares and extreme space weather reference added in 5.6 to a proposed future Part 6;
- e) reference added in 7.1 to a proposed new Part 7 on incorporating atmospheric radiation effects analysis into the system design process;
- f) reference added in 6.2.10 d) to a proposed future Part 8 on other particles including protons, pions and muons;
- g) clarification on calculating event rates where cross-sections have been obtained with nonatmospheric radiation like neutron sources, addition of a new Annex H, and changes to 5.3 and 8.2.

The text of this standard is based on the following documents:

FDIS	Report on voting
107/271/FDIS	107/275/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all the parts in the IEC 62396 series, published under the general title *Process* management for avionics – Atmospheric radiation effects, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This industry-wide International Standard informs avionics systems designers, electronic equipment manufacturers, component manufacturers and their customers of the kind of ionising radiation environment that their devices will be subjected to in aircraft, the potential effects this radiation environment can have on those devices, and some general approaches for dealing with these effects.

The same atmospheric radiation (neutrons and protons) that is responsible for the radiation exposure that crew and passengers acquire while flying is also responsible for causing the single event effects (SEE) in the avionics electronic equipment. There has been much work carried out over the last few years related to the radiation exposure of aircraft passengers and crew. A standardised industry approach on the effect of the atmospheric neutrons on electronics should be viewed as consistent with, and an extension of, the on-going activities related to the radiation exposure of aircraft passengers and crew.

Atmospheric radiation effects are one factor that could contribute to equipment hard and soft fault rates. From a system safety perspective, using derived fault rate values, the existing methodology described in ARP4754A (accommodation of hard and soft fault rates in general) will also accommodate atmospheric radiation effect rates.

In addition, this International Standard refers to the JEDEC Standard JESD 89A, which relates to soft errors in electronics by atmospheric radiation at ground level (at altitudes less than 10 000 ft (3 040 m)).

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 62396-1:2016</u> https://standards.iteh.ai/catalog/standards/sist/b92a9853-63be-411f-9401-50bae964aa22/iec-62396-1-2016

PROCESS MANAGEMENT FOR AVIONICS -ATMOSPHERIC RADIATION EFFECTS -

Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment

Scope 1

This part of IEC 62396 is intended to provide guidance on atmospheric radiation effects on avionics electronics used in aircraft operating at altitudes up to 60 000 ft (18.3 km). It defines the radiation environment, the effects of that environment on electronics and provides design considerations for the accommodation of those effects within avionics systems.

This International Standard is intended to help avionics equipment manufacturers and designers to standardise their approach to single event effects in avionics by providing guidance, leading to a standard methodology.

Details of the radiation environment are provided together with identification of potential problems caused as a result of the atmospheric radiation received. Appropriate methods are given for quantifying single event effect (SEE) rates in electronic components. The overall system safety methodology should be expanded to accommodate the single event effects rates and to demonstrate the suitability of the electronics for the application at the component and system level. (Stanuarus.iten.ar)

IEC 62396-1:2016

Normative references https://standards.iteh.ai/catalog/standards/sist/b92a9853-63be-411f-9401-2 50bae964aa22/iec-62396-1-2016

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 62239-1:2015, Process management for avionics – Management plan – Part 1: Preparation and maintenance of an electronic components management plan

IEC 62396-2:2012, Process management for avionics – Atmospheric radiation effects – Part 2: Guidelines for single event effects testing for avionics systems

IEC 62396-3, Process management for avionics – Atmospheric radiation effects – Part 3: System design optimization to accommodate the single event effects (SEE) of atmospheric radiation

IEC 62396-4:2013, Process management for avionics – Atmospheric radiation effects – Part 4: Design of high voltage aircraft electronics managing potential single event effects

IEC 62396-5, Process management for avionics – Atmospheric radiation effects – Part 5: Assessment of thermal neutron fluxes and single event effects in avionics systems

EIA-4899, Standard for Preparing an Electronic Components Management Plan

3 **Terms and definitions**

For the purposes of this document, the following terms and definitions apply.

NOTE Users of this international standard can use alternative definitions consistent with convention within their companies.

3.1

aerospace recommended practice

documents relating to avionics which are published by the Society of Automotive Engineers (SAE)

3.2

analogue single event transient ASET

ASEI

spurious signal or voltage produced at the output of an analogue component by the deposition of charge by a single particle

3.3

availability

probability that a system is working at instant *t*, regardless of the number of times it may have previously failed and been repaired

Note 1 to entry: For equipment, availability is the fraction of time the equipment is functional divided by the total time the equipment is expected to be operational, i.e. the time the equipment is functional plus any repair time.

3.4

avionics equipment environment

<aeronautical equipment> applicable environmental conditions (as described per the equipment specification) that the equipment is able to withstand without loss or degradation in equipment performance during all of its manufacturing cycle and maintenance life

(standards.iteh.ai)

Note 1 to entry: The length of the maintenance life is defined by the equipment manufacturer in conjunction with customers.

<u>IEC 62396-1:2016</u>

3.5 https://standards.iteh.ai/catalog/standards/sist/b92a9853-63be-411f-9401-

50bae964aa22/iec-62396-1-2016

ability of a component to be used successfully in the intended application

3.6

certified

capable

assessed and compliant to an applicable standard, with maintenance of a certificate and registration

3.7

characterisation

process of testing a sample of components to determine the key electrical parameter values that can be expected of all produced components of the type tested

3.8

component application

process that assures that the component meets the design requirements of the equipment in which it is used

3.9

component manufacturer

organisation responsible for the component specification and its production

3.10 could not duplicate CND

reported outcome of diagnostic testing on a piece of equipment

Note 1 to entry: Following receipt of an error or fault message during operation, the error or fault condition could not be replicated during subsequent equipment testing (see IEC 62396-3).

3.11

critical charge

smallest charge that will cause an SEE if injected or deposited in the sensitive volume

Note 1 to entry: For many electronic components, the unit applied is the pico coulomb (pC); however, for small geometry components, this parameter is measured in femto coulomb (fC).

3.12

cross-section

σ

<in proton and neutron interactions> combination of sensitive area and probability of an interaction depositing the critical charge for a SEE

Note 1 to entry: The cross-section may be calculated using the following formula:

 σ = number of errors/particle fluence

Note 2 to entry: The units for cross-section are cm² per electronic component or per bit.

3.13 double error correction triple error detection DECTED

system or equipment methodology to test a digital word of information to determine if it has been corrupted, and if corrupted, to conditionally apply a correction

Note 1 to entry: This methodology can correct two-bit corruptions and can detect and report three-bit corruptions. (Used within IEC 62396-3) Teh STANDARD PKEVIEV

3.14

(standards.iteh.ai) digital single event transient DSET

spurious digital signal or voltage, induced by the deposition of charge by a single particle that can propagate through the circuit path during one clock cycle

Note 1 to entry: See 6.2.4.

3.15

electron

elementary particle having a mass of approximately 1/1 840 atomic mass units, and a negative charge of $1,602 \times 10^{-19}$ C

3.16

electronic components management plan

ECMP

equipment manufacturer's document that defines the processes and practices for applying electronic components to an equipment or range of equipment

Note 1 to entry: Generally, it addresses all relevant aspects of the controlling components during system design, development, production, and post-production support.

3.17

electronic component

electrical or electronic device that is not subject to disassembly without destruction or impairment of design use

EXAMPLE Resistors, capacitors, diodes, integrated circuits, hybrids, application specific integrated circuits, wound components and relays.

Note 1 to entry: An electronic component is sometimes called electronic device, electronic part, or piece part.

3.18

electronic equipment

item produced by the equipment manufacturer, which incorporates electronic components

EXAMPLE End items, sub-assemblies, line-replaceable units and shop-replaceable units.

3.19

electronic flight instrumentation system

EFIS

avionics electronic system requiring system development assurance level A and for which the pilot will be within the loop (within the control loop) through the pilot/system information exchange

- 12 -

3.20

expert

person who has demonstrated competence to apply knowledge and skill to the specific subject

3.21

firm error

<semiconductor community> circuit cell failure within an electronic component that cannot be reset other than by rebooting the system or by cycling the power

Note 1 to entry: Such a failure can manifest itself as a soft fault in that it could provide no fault found during subsequent test and impact the value for the MTBUR of the LRU.

Note 2 to entry: See also soft error.

3.22

firm fault

RD PREVIEW eh <aircraft function level> failure that cannot be reset other than by rebooting the system or by cycling the power to the relevant functional element teh.ai)

Note 1 to entry: Such a fault can impact the value for the MTBF of the LRU and provide no fault found during the subsequent test.

https://standards.iteh.ai/catalog/standards/sist/b92a9853-63be-411f-9401-50bae964aa22/iec-62396-1-2016

3.23 fly-by-wire FBW

avionics electronic system requiring system development assurance level A and for which the pilot will not be within the aircraft stability control loop

3.24 functional hazard assessment FHA

assessment of all hazards against a set of defined hazard classes

3.25 giga electron volt GeV

energy gained when an electron is accelerated by an electric potential of 10^9 volts, that is, radiation particle energy of giga electron volts (thousand million electron volts)

Note 1 to entry: The SI equivalent energy is 160,2 pico joules.

3.26 gray

Gy

SI unit of ionising radiation dose, defined as the absorption of one joule (J) of radiation energy per one kilogram (kg) of matter

Note 1 to entry: Related units are centigray (cGy) and rad. 1 cGy is equal to 1 rad.

3.27

hard error

permanent or semi-permanent damage of a cell by atmospheric radiation that is not recoverable even by cycling the power off and on

Note 1 to entry: Hard errors can include SEB, SEGR and SEL. Such a fault would be manifest as a hard fault and can impact the value for the MTBF of the LRU.

3.28

hard fault

<aircraft function level> permanent failure of a component within an LRU

Note 1 to entry: A hard fault results in the removal of the LRU affected and the replacement of the permanently damaged component before a system/system architecture can be restored to full functionality. Such a fault can impact the value for the MTBF of the LRU repaired.

3.29

heavy ion

positively charged nucleus of the elements heavier than hydrogen and helium

3.30

in-the-loop

test methodology where an LRU is placed within a radiation beam that provides a simulation of the atmospheric neutron environment and where the inputs to the LRU can be from an electronic fixture external to the beam to enable a closed loop system

Note 1 to entry: The electronic fixture can contain a host computer for the aircraft simulation model. The electronic fixture can also contain appropriate signal conditioning for compatibility with the LRU. In the case of an automatic control function, the outputs from the LRU can be, in turn, sent to an actuation means or directly to the host computer. The host computer would automatically close a stability loop (as in the case of a fly-by-wire control system). In the case of a navigation function, the outputs from the LRU could be sent to a display system where the pilot could then close the navigation loop.

https://standards.iteh.ai/catalog/standards/sist/b92a9853-63be-411f-9401-

50bae964aa22/iec-62396-1-2016

3.31 integrated modular avionics IMA

implementation of aircraft functions in a multitask computing environment where the computations for each specific system implementing a particular function are confined to a partition that is executed by a common computing resource (a single digital electronic circuit)

3.32

latch-up

triggering of a parasitic p-n-p-n circuit in bulk CMOS, resulting in a state where the parasitic latched current exceeds the holding current

Note 1 to entry: This state is maintained while power is applied.

Note 2 to entry: Latch-up can be a particular case of a soft fault (firm/soft error) or in the case where it causes electronic component damage, a hard fault.

3.33 linear energy transfer

LET

energy deposited per unit path length in a semiconductor along the path of the radiation

Note 1 to entry: The units applicable are MeV·cm²/mg.

3.34

linear energy transfer threshold

LET_{th}

for a given component, the minimum LET to cause an effect at a particle fluence of 1×10^7 ions·cm⁻²