Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 13338 was prepared by Technical Committee ISO/TC 58, *Gas cylinders*, Subcommittee SC 2, *Cylinder fittings*.

Annex A of this International Standard is for information only https://standards.iten.arcatalog/standards/sist/d23ef432-11c3-4bc9-8653-6c4e52a8233f/iso-13338-1995

© ISO 1995

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland

::

Introduction

The purpose of ISO 5145 is to establish practical criteria for the determination of outlet connections of gas cylinders of water capacity 150 litres or less. These criteria are based on certain physicochemical properties of the gases, in particular their corrosiveness.

One of the difficulties in the application of ISO 5145 resides in the absence of criteria for classifying the corrosiveness level of a gas or a gas mixture. In fact,

- in the case of pure gases, there are few data in the literature, but above all,

— in the case of gas mixtures, these data are very often nonexistent. Investigation has shown that there is no correlation between the toxicity values defined by LC₅₀ (see ISO 10298) and corrosiveness.

<u>ISO 13338:1995</u> https://standards.iteh.ai/catalog/standards/sist/d23ef432-11c3-4bc9-8653-6c4e52a8233f/iso-13338-1995

iTeh STANDARD PREVIEW This page intentionally left blank (standards.iteh.ai)

<u>ISO 13338:1995</u> https://standards.iteh.ai/catalog/standards/sist/d23ef432-11c3-4bc9-8653-6c4e52a8233f/iso-13338-1995

Determination of tissue corrosiveness of a gas or gas mixture

1 Scope

This International Standard gives h STANDARD PREVIEW

- for pure gases: a complete list indicating their corrosiveness
- for gas mixtures: a calculation method, in the absence of experimental data, relating to the corrosiveness of each of their components,
 ISO 13338:1995

https://standards.iteh.ai/catalog/standards/sist/d23ef432-11c3-4bc9-8653in order to determine the corrosiveness of gases and gas mixtures on tissue so that a suitable outlet connection can be assigned to each of them.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 5145:1990, Cylinder valve outlets for gases and gas mixtures — Selection and dimensioning.

3 Definitions and symbols

3.1 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1.1 tissue corrosiveness of gases or gas mixtures: Ability of a gas to damage or destroy living tissues (eyes, skin and mucous membranes).

3.1.2 irritant gas: Gas which may cause a temporary reaction to the skin, eyes and mucous membranes.

NOTE 1 An irritant gas is regarded for the purposes of ISO 5145 as noncorrosive.

3.2 Symbols

L limit

- V volume
- C indicates a corrosive component
- C+ indicates a very corrosive component
- i indicates an irritant component
- nc indicates an noncorrosive component

4 Classification

Two levels of corrosiveness are defined (C+: very corrosive, C: corrosive), to provide greater accuracy in the calculation method for the corrosiveness of mixtures.

In accordance with the above, gases are classified into the following categories:

C+: very corrosive			
C: corrosive	Corrosive in the sense of 150 5145 F. V. F. W		
i: irritant	<pre> (standards.iteh.ai) noncorrosive in the sense of ISO 5145 </pre>		
nc: noncorrosive, non-irritant	<u>ISO 13338:1995</u>		

For a complete definition for purposes of the gas cylinder connection, the subdivisions of the FTSC code defined at the bottom of table 1 shall also be taken into account.

0: noncorrosive, non-irritant (nc)

- 1: forms nonhalogen acids (C+, C or i)
- 2: basic (C+, C or i)

3: forms halogen acids (C+, C or i)

5 Categories of corrosiveness for pure gases

The corrosiveness category of each gas (C+, C, i or nc) corresponding to the classification defined in clause 4 is shown in table 1.

Group No.	Gas name	Chemical formula	Synonym	FTSC Code	Corrosiveness category
7	Ammonia	NH ₃	R717	0202	С
4	Antimony pentafluoride	SbF ₅		0303	C+
8	Arsine	AsH ₃		2300	nc
12	Bis-(trifluoromethyl)peroxide	(CF ₃) ₂ O ₂		4300	nc
4	Boron trichloride	BCl ₃	Boron chloride	0203	С
4	Boron trifluoride	BF ₃	Boron fluoride	0253	C+
12	Bromine pentafluoride	BrF ₅		4303	C+
12	Bromine trifluoride	BrF ₃		4303	C +
4	Bromoacetone	CH₃COCH₂Br		0303	С
13	Buta-1,3-diene (inhibited)	$CH_2 = CH - CH = CH_2$		5100	nc
8	Carbon monoxide	со		2250	nc
8	Carbonyl sulfide	COS	Carbonoxylsulfide	2301	nc
4	Carbonyl fluoride	CF ₂ O		0213	C+
12	Chlorine Tob ST		DEVIEW	4203	C+
12	Chlorine pentafluoride	CIF ₅		4303	C+
12	Chlorine trifluoride	and angls.itel	1.ai)	4303	C+
8	Chloromethane	CH ₃ CI	Methyl chloride R40	2200	nc
13	Chlorotrifluoroethylene	150 13338.1995 CCIF ai/catalog/si4uda8ds/sist/d23	ef432-11c3-4bc9-8653-	5200	nc
8	Cyanogen	6c4e52a82(CN) ₂ o-13338-1	.995	2300	i
4	Cyanogen chloride	CICN		0303	С
8	Cyclopropane	C ₃ H ₆	Trimethylene	2200	nc
4	Deuterium chloride	DCI		0213	С
4	Deuterium fluoride	DF		0203	C+
8	Deuterium selenide	D ₂ Se		2301	i
8	Deuterium sulfide	D ₂ S		2301	i
13	Diborane	B ₂ H ₆		5350	nc
4	Dibromodifluoromethane	CBr ₂ F ₂	R12B2	0200	nc
4	Dichloro(2-chlorovinyl)arsine	C ₂ H ₂ AsCl ₃	Lewisite	0303	C+
8	Dichlorosilane	SiH ₂ Cl ₂		2203	С
9	Diethylzinc	(C ₂ H ₅) ₂ Zn		3300	nc
7	Dimethylamine	(CH ₃) ₂ NH		2202	С
8	Dimethylsilane	(CH ₃) ₂ SiH ₂		2300	nc
4	Diphosgene	C ₂ O ₂ Cl ₄		0303	С
4	Ethyldichloroarsine	C ₂ H ₅ AsCl ₂		0303	С
13	Ethylene oxide	C ₂ H ₄ O	Oxirane	5200	i
12	Fluorine	F ₂		4343	C+
8	Fluoroethane	C ₂ H ₅ F	Ethyl fluoride	2300	nc
8	Germane	GeH₄		2300	nc

Group No.	Gas name	Chemical formula	Synonym	FTSC Code	Corrosiveness category
8	Heptafluorobutyronitrile	C ₃ F ₇ N		2300	nc
4	Hexafluoroacetone	C ₃ F ₆ O	Perfluoroacetone	0203	С
8	Hexafluorocyclobutene	C ₄ F ₆		2300	nc
4	Hydrogen bromide	HBr	Hydrobromic acid (anhydrous)	0203	С
4	Hydrogen chloride	HCI	Hydrochloric acid (anhydrous)	0213	С
13	Hydrogen cyanide	HCN	Hydrocyanic acid (anhydrous)	5301	i
4	Hydrogen fluoride	HF	Hydrofluoric acid (anhydrous)	0203	C+
4	Hydrogen iodide	Н	Hydroiodic acid (anhydrous)	0203	С
8	Hydrogen selenide	H ₂ Se		2301	i
8	Hydrogen sulfide	H ₂ S		2301	i
12	lodine pentafluoride	IF ₅		4303	C+
4	lodotrifluoromethane	CF ₃ I	Trifluoromethyl iodide	0200	nc
4	Methyl bromide		Bromomethane	0300	i
8	Methyl mercaptan	CH ₃ SH	Methanethiol	2201	i
13	Methyl vinyl ether (inhibited)	(standards	It Methoxye thylene	5200	nc
4	Methyldichloroarsine	CH ₃ AsCl ₂	1005	0303	C+
8	Methylsilane https://standar	.CH ₃ SiH ₃ SiH ₃	sist/d23ef432-11c3-4bc9-865	₃₋ 2300	nc
7	Monoethylamine	6C4H5NH233f/iso-	3338Ethylamine R631	2202	С
7	Monomethylamine	CH₃NH₂	Methylamine R630	2202	С
4	Mustard gas	C ₄ H ₈ Cl ₂ S		0303	C+
8	Nickel carbonyl	Ni(CO) ₄	Nickel tetracarbonyl	2300	nc
12	Nitric oxide	NO	Nitrogen oxide	4351	С
12	Nitrogen dioxide	NO ₂	Nitrogen(IV) oxide	4301	С
12	Nitrogen trifluoride	NF ₃		4153	i
12	Nitrogen trioxide	N ₂ O ₃	Nitrogen sesquioxide	4301	С
4	Nitrosyl chloride	NOCI		0203	C+
12	Oxygen difluoride	F ₂ O		4343	C+
12	Ozone	O ₃		4330	i
9	Pentaborane	B ₅ H ₁₀		3300	nc
8	Pentafluoropropionitrile	C ₃ F ₅ N		2300	nc
4	Perfluorobut-2-ene	C₄F ₈		0200	nc
4	Phenylcarbylamine chloride	C ₆ H ₅ NCCl ₂		0303	С
4	Phosgene	COCI ₂	Carbonyl chloride	0303	С
9	Phosphine	PH ₃		3310	nc
4	Phosphorus pentafluoride	PF₅		0203	C+
4	Phosphorus trifluoride	PF ₃		0203	C+
13	Propylene oxide	C ₃ H ₅ O	Methyl oxirane	5200	i

Group No.	Gas name	Chemical formula	Synonym	FTSC Code	Corrosiveness category
9	Silane	SiH₄	Silicon tetrahydride	3150	nc
4	Silicon tetrafluoride	SiF₄	Tetrafluorosilane R764	0253	C+
4	Silicon tetrachloride	SiCl ₄		0203	С
13	Stibine	SbH ₃	Antimony hydride	5300	nc
4	Sulfur dioxide	SO ₂		0201	С
4	Sulfur tetrafluoride	SF ₄		0203	C+
4	Sulfuryl fluoride	SO ₂ F ₂		0300	nc
8	Tetraethyllead	(C₂H₅)₄Pb		2300	nc
12	Tetrafluorohydrazine	N_2F_4		4343	C+
8	Tetramethyllead	(CH ₃)₄Pb		2300	nc
9	Triethylaluminium	(C ₂ H ₅) ₃ AI		3300	nc
9	Triethylborane	(C ₂ H ₅) ₃ B		3300	nc
8	Trifluoroacetonitrile	C_2F_3N		2300	i
8	Trifluoroethylene	C ₂ HF ₃		2200	nc
7	Trimethylamine	(CH ₃) ₃ N		2202	С
8	Trimethylsilane	(CH ₃) ₃ SiH		2300	nc
9	Trimethylstibine Teh ST	AN ICH333RD P	REVIEW	3300	nc
4	Tungsten hexafluoride	WF ₆ site	h ai)	0303	С
4	Uranium hexafluoride	UF ₆	1.41)	0303	С
13	Vinyl bromide (inhibited)	IS62H3B38:1995		5200	nc
13	Vinyl chloride (in hibited) ds. iteh.	ai/catalog/@2Hd@Ids/sist/d2.	cf Chlorbethylene R1140	5200	nc
13	Vinyl fluoride (inhibited)	6c4e52a82331/so-13338- C ₂ H ₃ F	Fluoroethylene R1141	5100	nc

NOTES

1 Description of each group:

Group 4: nonflammable, toxic and corrosive or corrosive by hydrolysis;

Group 7: basic, flammable and corrosive;

Group 8: flammable, toxic and corrosive (acid) or noncorrosive;

Group 9: spontaneously flammable;

Group 12: oxidizing, toxic and corrosive;

Group 13: flammable, subject to decomposition.

2 Key FTSC (ISO 5145)

0 = noncorrosive

1 = forms nonhalogenated acids

2 = basic

3 = forms halogenated acids