

Edition 2.0 2019-03 REDLINE VERSION

INTERNATIONAL STANDARD

Fibre optic interconnecting devices and passive components – Basic test and measurement procedures –

Part 2-46: Tests – Damp heat, cyclic 10 210 S. 11 et a. 21

Document Preview

IEC 61300-2-46:2019

ottps://standards.iteh.ai/catalog/standards/iec/ffc44049-8fc0-4e39-a374-7c8fcd6a78e7/iec-61300-2-46-2019

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2019 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20

Tel.: +41 22 919 02 11 info@iec.ch

www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

Edition 2.0 2019-03 REDLINE VERSION

INTERNATIONAL **STANDARD**

Fibre optic interconnecting devices and passive components - Basic test and measurement procedures –
Part 2-46: Tests – Damp heat, cyclic dards iteh.ai)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.180.20 ISBN 978-2-8322-6682-3

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	FOREWORD				
1	Sco	pe	5		
2	Nor	mative references	5		
3	Ter	Terms and definitions			
4	Ger	General description6			
5		aratus			
	5.1	Chamber			
	5.2	Others -apparatus	7		
6	Pro	cedure			
	6.1	Preparation of specimens DUT	7		
	6.2	Initial examinations and measurements			
	6.3	Conditioning	8		
	6.3.	1 Placing the DUT	8		
	6.3.	2 Stabilizing	8		
	6.3.	3 24 h cycle	9		
	6.4	Intermediate measurement			
	6.5	Recovery			
	6.6	Final examinations and measurements			
7		erities			
8	8 Details to be specified				
В	ibliogra	phy Document Preview	13		
F	igure –	Test Db- Test cycle			
	•	<u>пъс 01300-2-40.2019</u> тъ Test ₁ Test cycle			
		- Test - Stabilizing period			
	_	- Test - Recovery at controlled conditions			

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS – BASIC TEST AND MEASUREMENT PROCEDURES –

Part 2-46: Tests - Damp heat, cyclic

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- All users should ensure that they have the latest edition of this publication. 86cd6a78e7/iec-61300-2-46-2019
 - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

International Standard IEC 61300-2-46 has been prepared by subcommittee 86B: Fibre optic interconnecting devices and passive components, of IEC technical committee 86: Fibre optics.

This second edition cancels and replaces the first edition published in 2006. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) complete revision to harmonize with IEC 60068-2-30;
- b) addition of detail description Clause 4, General description;
- c) addition of detail description Clause 5, Apparatus;
- d) addition of detail description Clause 6, Procedure.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
86B/4167/FDIS	86B/4182/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61300 series, published under the general title Fibre optic interconnecting devices and passive components – Basic test and measurement procedures, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- · withdrawn,
- replaced by a revised edition, or
- amended.

The contents of the corrigendum 1 (2022-02) have been included in the English part of this copy.

IMPORTANT – The "colour inside" logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS – BASIC TEST AND MEASUREMENT PROCEDURES –

Part 2-46: Tests - Damp heat, cyclic

1 Scope

The purpose of this part of IEC 61300 is to describe a test to determine the suitability of a fibre optic device to withstand the environmental condition of high humidity and change of temperature which may can occur in actual use, storage and/or transport.

The test is primarily intended to determine the suitability of fibre optic components under conditions of high humidity – combined with cyclic temperature changes and, in general, producing condensation on the surface of the specimen device under test (DUT). Absorption of moisture may can result in swelling that would destroy functional utility, cause loss of physical strength, and cause changes in other important mechanical properties. Degradation of optical properties may can also occur.

Although not necessarily intended as a simulated tropical test, this test can, nevertheless, be useful in determining moisture absorption of insulating or covering materials.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-1:2013, Environmental testing – Part 1: General and guidance

IEC 60068-2-30, Environmental testing - Part 2-30: Tests - Test Db: Damp heat, cyclic (12 h + 12 h cycle)

IEC 60068-3-6, Environmental testing – Part 3-6: Supporting documentation and guidance – Confirmation of the performance of temperature/humidity chambers

IEC 61300-1, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 1: General and guidance

IEC 61300-3-1, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-1: Examinations and measurements – Visual examination

IEC 61300-3-3, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-3: Examinations and measurements – Active monitoring of changes in attenuation and return loss

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

4 General description

The test described in this document comprises one or more temperature cycles in which the relative humidity is maintained at a high level.

The upper temperature of the cycle and the number of cycles (see Clause 7) determine the test severity.

Test profiles illustrating the procedure are shown in Figure 1, Figure 2, and Figure 3.

The tolerances stated in this document do not take measurement uncertainty into consideration.

5 Apparatus

5.1 Chamber

The apparatus consists of an environmental chamber in accordance with IEC 60068-2-30, test Db. The chamber shall be capable of housing the specimen and of allowing access for measurement during conditioning. It shall also be capable of maintaining the specified temperatures and humidity within the specified tolerances. Forced air circulation may be used to maintain homogeneous conditions. The chamber and accessories shall be constructed and arranged in such a manner as to avoid condensation on the specimens.

Water: use distilled, demineralized or deionized water to obtain the specified humidity. No rust or corrosion contaminants shall be imposed on the specimen by the test facility.

- a) The temperature can be varied cyclically between 25 $^{\circ}$ C \pm 3 $^{\circ}$ C and the appropriate upper temperature specified with the tolerance and rate of change specified in 6.3.3 and Figure 1, as applicable.
- b) The relative humidity in the working space can be maintained within the limits given in 6.3.3 and in Figure 1 as applicable.
- c) Care shall be taken to ensure that the conditions prevailing at any point in the working space are uniform and are as similar as possible to those prevailing in the immediate vicinity of suitably located temperature and humidity sensing devices. The chamber shall meet the performance criteria as detailed in IEC 60068-3-6.
- d) The DUTs shall not be subjected to radiant heat from the chamber conditioning processes.
- e) Condensed water shall be continuously drained from the chamber and not used again until it has been re-purified.
- f) Precautions shall be taken to ensure that no condensed water is allowed to fall on the DUTs.
- g) The dimensions, properties and/or electrical loading of the DUTs shall not appreciably influence conditions within the chamber.

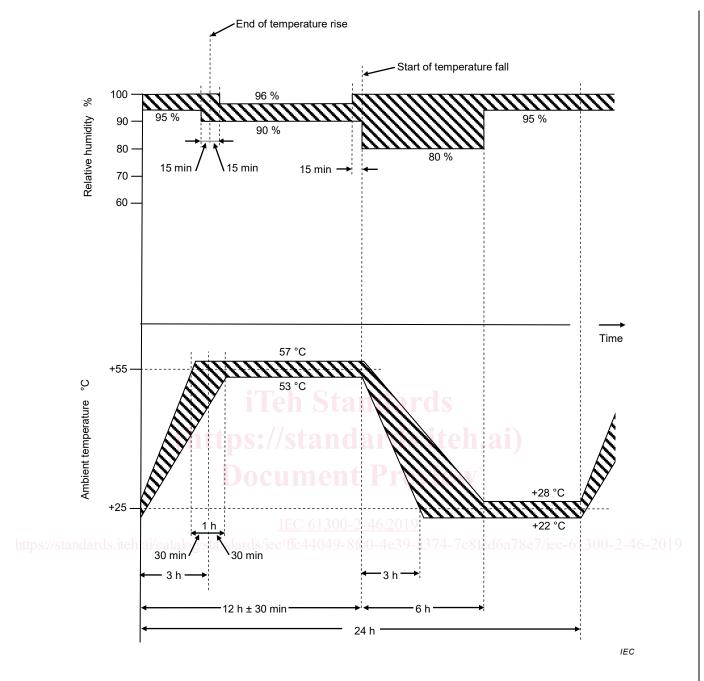


Figure 1 - Test - Test cycle

5.2 Others apparatus

Additional apparatus may be necessary to perform the examinations and measurements specified by the relevant specification.

6 Procedure

6.1 Preparation of specimens DUT

Prepare the specimen DUT according to the manufacturer's instructions or as specified in the relevant specification. The specimen DUT shall be terminated with a sufficient length of fibre cable to facilitate connection with the optical source and detector.

Maintain the <u>specimen</u> DUT under standard atmospheric conditions <u>(room temperature condition)</u> per IEC 61300-1 for 2 h minimum.

Clean the mechanical and optical alignment parts of the specimen DUT according to the manufacturer's instructions.

6.2 Initial examinations and measurements

If specified, perform initial examinations and measurements as required by the relevant specification.

6.3 Conditioning

- **5.3.1** Stabilize the chamber and the specimen to standard atmospheric conditions. Place the specimen in the chamber in its normal operating position, including hook-ups to peripheral equipment (when required).
- **5.3.2** Adjust the chamber temperature and humidity to the specified severity. The rate of change of temperature shall not exceed 1 °C/min, averaged over a maximum period of 5 min. In any case the rising temperature should stay within the limits indicated in Figure 1.
- **5.3.3** At the completion of the test, allow the specimen to remain in the chamber while the temperature is gradually reduced to standard atmospheric conditions. The rate of change of temperature shall not exceed 1 °C/min, averaged over a maximum period of 5 min. In any case the decreasing temperature should stay within the limits indicated in Figure 1.
- **5.3.4** Where optical measurements are required during the test, measurements shall be made at a maximum interval of 1 h. Do not remove the specimen(s) from the chamber when taking these measurements. Measurements shall be made in accordance with IEC 61300-3-3.

6.3.1 Placing the DUT

The DUT shall be introduced into the chamber either in the unpacked, ready-for-use state, or as otherwise specified in the relevant specification.

Where no specific mounting is required, the thermal conduction of the mounting shall be low, so that for all practical purposes the DUT is thermally isolated.

6.3.2 Stabilizing

6.3.2.1 Temperature tolerance

The total temperature tolerances of ± 2 °C and ± 3 °C given in this document are intended to take account of absolute errors in the measurement, slow changes of temperature, and temperature variations of the working space. However, in order to maintain the relative humidity within the required tolerances, it is necessary to keep the temperature difference between any two points in the working space at any moment within narrower limits. The required humidity conditions will not be achieved if such temperature differences exceed 1 °C. It may also be necessary to keep short-term fluctuations within ± 0.5 °C to maintain the required humidity.

6.3.2.2 Stabilization period

The temperature of the DUT shall be stabilized at 25 $^{\circ}$ C \pm 3 $^{\circ}$ C (the definition of temperature stability is given in IEC 60068-1 and IEC 60068-5-2) – see Figure 2. This shall be achieved by either

- a) placing the DUT in a separate chamber before introducing it into the test chamber, or
- a) adjusting the temperature of the test chamber to 25 $^{\circ}$ C \pm 3 $^{\circ}$ C after the introduction of the DUT and maintaining it at this level until the DUT attains temperature stability.

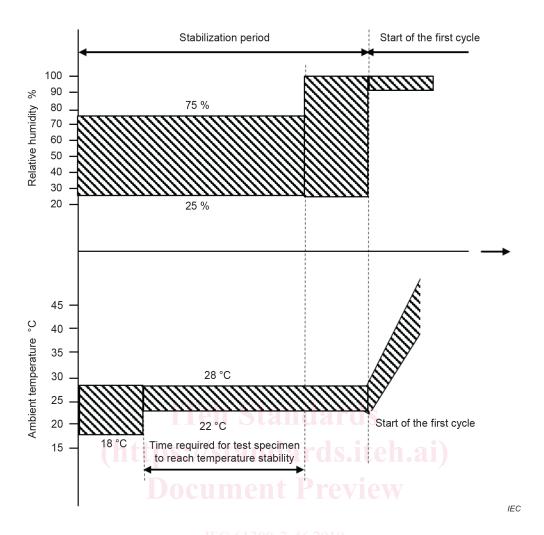


Figure 2 - Test - Stabilizing period

https://standards.iteh.ai/catalog/standards/iec/ffc44049-8fc0-4e39-a374-7c8fcd6a78e7/iec-61300-2-46-2019

During the stabilization of temperature by either method, the relative humidity shall be within the limits specified for standard atmospheric conditions for testing.

Following stabilization, with the DUT in the test chamber, the relative humidity shall not be less than 95 % RH at an ambient temperature of 25 $^{\circ}$ C \pm 3 $^{\circ}$ C.

6.3.3 24 h cycle

a) The temperature of the chamber shall be raised to the appropriate upper temperature specified by the relevant specification. The upper temperature shall be achieved in a period of 3 h \pm 30 min and at a rate within the limits defined by the shaded areas in Figure 1.

During this period, the relative humidity shall not be less than 95 % RH. During the last 15 min it shall not be less than 90 % RH.

Condensation may occur on the DUT during this temperature-rise period.

NOTE The condensation condition implies that the surface temperature of the DUT is below the dew point of the air in the chamber.

- b) The temperature shall then be maintained within the specified limits for the upper temperature (± 2 °C) until 12 h \pm 30 min from the start of the cycle.
 - During this period, the relative humidity shall be 93 % RH \pm 3 % RH. During the first and last 15 min it shall be between 90 % RH and 100 % RH.
- c) The temperature shall be lowered to 25 $^{\circ}$ C \pm 3 $^{\circ}$ C within 3 h to 6 h. The relative humidity shall be not less than 80 $^{\circ}$ RH.

d) The temperature shall then be maintained at 25 $^{\circ}$ C ± 3 $^{\circ}$ C with a relative humidity of not less than 95 $^{\circ}$ RH until the 24 h cycle is completed.

6.4 Intermediate measurement

Where optical measurements are required during the test, measurements shall be made at a maximum interval of 1 h. The DUT(s) shall not be removed from the chamber when taking these measurements. Measurements shall be made in accordance with IEC 61300-3-3.

6.5 Recovery

Allow the specimen to remain under standard atmospheric conditions for a period of 2 h.

The relevant specification shall specify whether recovery shall be made at standard atmospheric conditions for testing (see 4.3 of IEC 60068-1:2013), or at controlled recovery conditions (see 4.4.2 of IEC 60068-1:2013).

When controlled recovery conditions are required (see Figure 3), the DUT may be transferred to another chamber for this recovery period or may remain in the damp heat chamber.

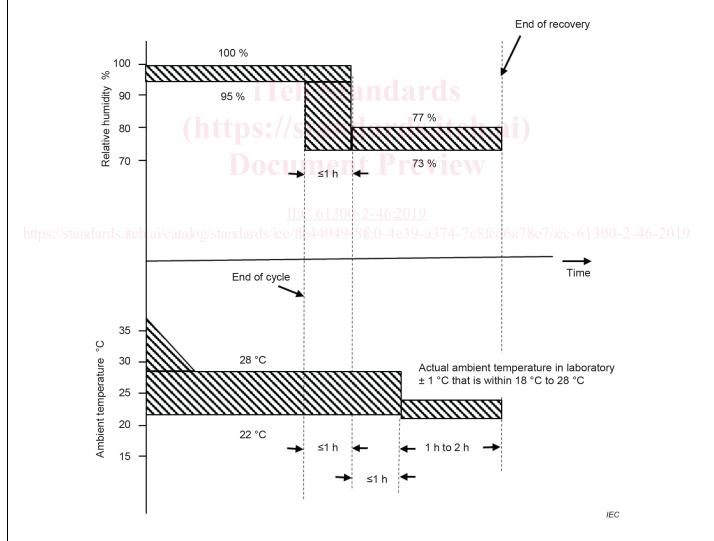


Figure 3 - Test - Recovery at controlled conditions

Where the DUT is transferred to another chamber, the change-over time shall be as short as possible and not more than 10 min.