

SLOVENSKI STANDARD SIST EN 62453-303-1:2010

01-januar-2010

Specifikacija vmesnika orodja procesne naprave - 303-1. del: Integracija komunikacijskih profilov - IEC 61784 CP 3/1 in CP 3/2 (IEC 62453-303-1:2009)

Field device tool interface specification -- Part 303-1: Communication profile integration -- IEC 61784 CP 3/1 and CP 3/2

Field Device Tool (FDT)-Schnittstellenspezifikation - Teil 303-1: Integration von Kommunikationsprofile (CP) 3/1 und 3/2

Spécification des interfaces des outils des dispositifs de terrain (FDT) - Partie 303-1: Intégration des profils de communication - CEI 61784 CP 3/1 et CP 3/2

https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-

Ta slovenski standard je istoveten z: EN 62453-303-1-2019

ICS:

25.040.40 Merjenje in krmiljenje Industrial process

industrijskih postopkov measurement and control

35.240.50 Uporabniške rešitve IT v IT applications in industry

industriji

SIST EN 62453-303-1:2010 en,fr

SIST EN 62453-303-1:2010

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 62453-303-1:2010</u> https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-3d55cda1693e/sist-en-62453-303-1-2010 **EUROPEAN STANDARD**

EN 62453-303-1

NORME EUROPÉENNE EUROPÄISCHE NORM

October 2009

ICS 25.040.40; 35.100.05; 35.110

English version

Field device tool (FDT) interface specification - Part 303-1: Communication profile integration - IEC 61784 CP 3/1 and CP 3/2

(IEC 62453-303-1:2009)

Spécification des interfaces des outils des dispositifs de terrain (FDT) - Partie 303-1: Intégration des profils de communication - CEI 61784 CP 3/1 et CP 3/2 (CEI 62453-303-1:2009)

Field Device Tool (FDT)Schnittstellenspezifikation Teil 303-1: Integration
von Kommunikationsprofile (CP)
3/1 und 3/2 nach IEC 61784
(IEC 62453-303-1:2009)

iTeh STANDARD PREVIEW (standards.iteh.ai)

This European Standard was approved by CENELEC on 2009-08-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: Avenue Marnix 17, B - 1000 Brussels

Foreword

The text of document 65E/127/FDIS, future edition 1 of IEC 62453-303-1, prepared by SC 65E, Devices and integration in enterprise systems, of IEC TC 65, Industrial-process measurement, control and automation, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 62453-303-1 on 2009-08-01.

Each part of the EN 62453-3xy series is intended to be read in conjunction with EN 62453-2.

The following dates were fixed:

latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement

(dop) 2010-05-01

 latest date by which the national standards conflicting with the EN have to be withdrawn

i en

(dow) 2012-08-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 62453-303-1:2009 was approved by CENELEC as a European Standard without any modification. STANDARD PREVIEW

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

[5] IEC 61158-6 NOTE Harmonized as EN 61158-6:2004 (not modified).

[7] IEC 61158-5 NOTE Harmonized as EN 61458-5:2004 (not modified).

> https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-3d55cda1693e/sist-en-62453-303-1-2010

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
IEC 61131-3	2003	Programmable controllers - Part 3: Programming languages	EN 61131-3	2003
IEC 61158	Series	Industrial communication networks - Fieldbus specifications	EN 61158	Series
IEC 61158-2	_1)	Industrial communication networks - Fieldbus specifications - Part 2: Physical layer specification and service definition	EN 61158-2	2008 ²⁾
IEC 61158-3-3	_¹)	Industrial communication networks - Fieldbus specifications - Part 3-3: Data-link layer service definition - Type 3 elements	EN 61158-3-3	2008 ²⁾
IEC 61158-4-3	_1) https://	Industrial communication networks - 21) Fieldbus specifications - Part 4-3: Data-link layer protocol specification - sType 3 elements og/standards/sist/7a59a77b-30ef-40l		2008 ²⁾
IEC 61158-5-3	_1)	Industrial communication networks—1-2010 Fieldbus specifications - Part 5-3: Application layer service definition - Type 3 elements	EN 61158-5-3	2008 ²⁾
IEC 61158-6-3	_1)	Industrial communication networks - Fieldbus specifications - Part 6-3: Application layer protocol specification - Type 3 elements	EN 61158-6-3 า	2008 ²⁾
IEC 61784-1	_1)	Industrial communication networks - Profiles - Part 1: Fieldbus profiles	EN 61784-1	2008 ²⁾
IEC 62453-1	2009	Field device tool (FDT) interface specification - Part 1: Overview and guidance	EN 62453-1	2009
IEC 62453-2	2009	Field device tool (FDT) interface specification - Part 2: Concepts and detailed description	EN 62453-2	2009

¹⁾ Undated reference.

²⁾ Valid edition at date of issue.

SIST EN 62453-303-1:2010

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 62453-303-1:2010</u> https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-3d55cda1693e/sist-en-62453-303-1-2010

IEC 62453-303-1

Edition 1.0 2009-06

INTERNATIONAL STANDARD

Field device tool (FDT) interface specification—REVIEW
Part 303-1: Communication profile integration—IEC 61784 CP 3/1 and CP 3/2

SIST EN 62453-303-1:2010 https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-3d55cda1693e/sist-en-62453-303-1-2010

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE XA

ICS 25.040.40; 35.100.05; 35.110

ISBN 2-8318-1050-1

CONTENTS

FΟ	REWO	ORD	5
INT	RODU	UCTION	7
1	Scop	pe	8
2	Norm	native references	8
3	Term	ns, definitions, symbols, abbreviated terms and conventions	9
	3.1	Terms and definitions	9
	3.2	Symbols and abbreviated terms	9
	3.3	Conventions	9
		3.3.1 Data type names and references to data types	9
		3.3.2 Vocabulary for requirements	9
		3.3.3 Use of UML	
4	Bus	category	10
5	Acce	ess to instance and device data	10
	5.1	Process Channel objects provided by DTM	10
	5.2	DTM services to access instance and device data	10
6	Proto	ocol specific behavior	10
	6.1	PROFIBUS device model	10
	6.2	Configuration and parameterization of PROFIBUS devices	
		6.2.1 General	11
		6.2.2 Monolithic DTM for a modular PROFIBUS device	12
		6.2.3 Modular DTM for a modular PROFIBUS device	12
	6.3	Support for DPV0 configuration g/standards/sist/7a59a77b-30ef-40b6-a73f-	13
	6.4	PROFIBUS slaves operating without a cyclic PROFIBUS master	
	6.5	PROFIBUS-related information of a slave DTM	
		6.5.1 General	
7	Droto	6.5.2 Bus Master Configuration Part (BMCP)	
7		ocol specific usage of general data types	
8		ocol specific common data types	
9		vork management data types	
	9.1	General	26
		9.1.1 Configuration	
		9.1.2 Process Channel	
	0.0	9.1.3 Parameterization	
	9.2	Master-bus parameter set	
	9.3 9.4	Slave bus parameter set	
	9.5	GSD information	
	3.5	9.5.1 General	
		9.5.2 GSD for gateway devices	
10	Comi	munication data types	
. •		General	
		Error information provided by Communication Channel	
		DPV0 communication	
		DPV1 communication	
11		nnel parameter data types	

40 D :	en de de	40
	identification	
	eneral	
	rotocol specific handling of the data type STRINGommon device type identification data types	
	opology scan data typesopology scan data types	
	can identification data types	
	evice type identification data types – provided by DTM	
	lentification information in GUI	
13 ProfiSa	fe	57
13.1 N	lotivation	57
13.2 G	eneral parameter handling	57
	rofiSafe individual device parameter	
Bibliograph	y	60
Figure 1 – F	Part 303-1 of the IEC 62453 series	7
Figure 2 – F	FDT PROFIBUS device model	11
Figure 3 – E	Example for IO data within datagrams	30
Figure 4 – F	F-Parameter and individual device parameter	58
_	Data structure of ProfiSafe individual device parameters	
Table 1 – P	rotocol identifiers(standards.iteh.ai)	10
Table 2 – P	hysical layer identifiers	10
Table 3 – B	MPC Part1 – General configuration53-303-1:2010	15
Table 4 – B	MPC Parti2 — Parameter data 3d55cda1693e/sist-en-62453-303-1-2010	15
Table 5 – B	MPC Part3 – Configuration data	16
Table 6 – P	art 4: Address table and slave user parameters	17
Table 7 – P	art 4: Extended Prm data	17
Table 8 – C	omplete BMCP	18
Table 9 – P	rotocol specific usage of general data types	24
	Bus parameter set for master device	
Table 11 –	Bus parameter set for slave device	29
	. Signal channels within the data frame	
	Simple DPV0 communication data types	
	Structured DPV0Communication data types	
	Availability of services for Master Class1 (C1)	
	Availability of services for Master Class2 (C2)	
	Simple DPV1 communication data types	
	Structured DPV1 communication data types	
	Mapping of DPV1 data types to FDT data types	
	Simple ChannelParameter data types	
	Structured ChannelParameter data types	
	Identification data types with Profibus DP specific mapping	
	Identification data types with Profibus I&M specific mapping	
i abie 24 –	Identification data types with Profibus PA specific mapping	50

-4-

Table 25 – Simple identification data types with protocol independent semantics	. 51
Table 26 – Structured identification data types with protocol independent semantics	.51
Table 27 – Simple topology scan data types	.51
Table 28 – Structured topology scan data types	.51
Table 29 – Simple scan identification data types	.52
Table 30 – Structured scan identification data types	. 52
Table 31 – Structured device identification data types	. 55

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62453-303-1:2010 https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-3d55cda1693e/sist-en-62453-303-1-2010

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION -

Part 303-1: Communication profile integration – IEC 61784 CP 3/1 and CP 3/2

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication: 03-1-2010
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62453-303-1 been prepared by subcommittee 65E: Devices and integration in enterprise systems, of IEC technical committee 65: Industrial-process measurement, control and automation.

This part, in conjunction with the other parts of the first edition of the IEC 62453 series cancels and replaces IEC/PAS 62453-1, IEC/PAS 62453-2, IEC/PAS 62453-3, IEC/PAS 62453-4 and IEC/PAS 62453-5 published in 2006, and constitutes a technical revision.

Each part of the IEC 62453-3xy series is intended to be read in conjunction with IEC 62453-2.

62453-303-1 © IEC:2009(E)

The text of this standard is based on the following documents:

FDIS	Report on voting
65E/127/FDIS	65E/140/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62453 series, under the general title *Field Device Tool (FDT) interface specification*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed.
- · withdrawn,
- · replaced by a revised edition, or
- · amended.

A bilingual version of this publication may be issued at a later date.

(standards.iteh.ai)

SIST EN 62453-303-1:2010 https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-3d55cda1693e/sist-en-62453-303-1-2010

-6-

-7-

INTRODUCTION

This part of IEC 62453 is an interface specification for developers of FDT (Field Device Tool) components for function control and data access within a client/server architecture. The specification is a result of an analysis and design process to develop standard interfaces to facilitate the development of servers and clients by multiple vendors that need to interoperate seamlessly.

With the integration of fieldbusses into control systems, there are a few other tasks which need to be performed. In addition to fieldbus- and device-specific tools, there is a need to integrate these tools into higher-level system-wide planning- or engineering tools. In particular, for use in extensive and heterogeneous control systems, typically in the area of the process industry, the unambiguous definition of engineering interfaces that are easy to use for all those involved is of great importance.

A device-specific software component, called DTM (Device Type Manager), is supplied by the field device manufacturer with its device. The DTM is integrated into engineering tools via the FDT interfaces defined in this specification. The approach to integration is in general open for all kinds of fieldbusses and thus meets the requirements for integrating different kinds of devices into heterogeneous control systems.

Figure 1 shows how IEC 62453-303-1 is aligned in the structure of the IEC 62453 series.

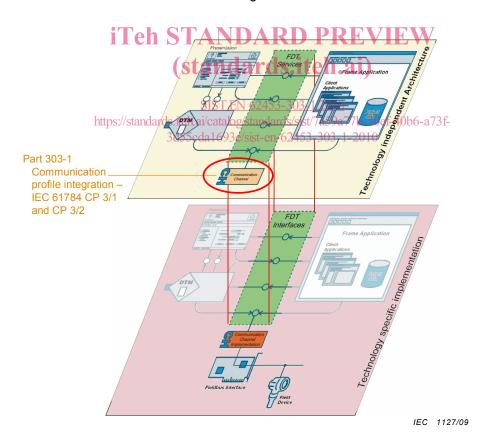


Figure 1 - Part 303-1 of the IEC 62453 series

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION -

Part 303-1: Communication profile integration – IEC 61784 CP 3/1 and CP 3/2

1 Scope

Communication Profile 3/1 and Communication Profile 3/2 (commonly known as PROFIBUS $^{\rm TM}$ 1) defines communication profiles based on IEC 61158-2 Type 3, IEC 61158-3-3, IEC 61158-4-3, IEC 61158-5-3, and IEC 61158-6-3. The basic profiles CP 3/1 (PROFIBUS DP) and CP 3/2 (PROFIBUS PA) are defined in IEC 61784-1.

This part of IEC 62453 provides information for integrating the PROFIBUS protocol into the FDT interface specification (IEC 62453–2).

This part of the IEC 62453 specifies communication and other services.

This specification neither contains the FDT specification nor modifies it.

2 Normative references STANDARD PREVIEW

The following referenced documents are indispensable for the application of this specification. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies

https://standards.iteh.ai/catalog/standards/sist/7a59a77b-30ef-40b6-a73f-

IEC 61131-3:2003, Programmable controllers Part 3. Programming languages

IEC 61158 (all parts), Industrial communication networks - Fieldbus specifications

IEC 61158-2, Industrial communication networks – Fieldbus specifications – Part 2: Physical layer specification and service definition

IEC 61158-3-3, Industrial communication networks – Fieldbus specifications – Part 3-3: Datalink layer service definition – Type 3 elements

IEC 61158-4-3 Industrial communication networks – Fieldbus specifications – Part 4-3: Datalink layer protocol specification – Type 3 elements

IEC 61158-5-3: Industrial communication networks — Fieldbus specifications — Part 5-3: Application layer service definition — Type 3 elements

IEC 61158-6-3, Industrial communication networks – Fieldbus specifications – Part 6-3: Application layer protocol specification – Type 3 elements

IEC 61784-1, Industrial communication networks - Profiles - Part 1: Fieldbus profiles

PROFIBUS™ is a trade names of the non-profit organization PROFIBUS Nutzerorganisation e.V. (PNO). This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this standard does not require use of the registered logos for PROFIBUS™. Use of the registered logos for PROFIBUS™ requires permission of PNO.

62453-303-1 © IEC:2009(E)

_ 9 _

IEC 62453-1:2009, Field Device Tool (FDT) interface specification - Part 1: Overview and guidance

IEC 62453-2:2009, Field Device Tool (FDT) interface specification - Part 2: Concepts and detailed description

Terms, definitions, symbols, abbreviated terms and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62453-1 and IEC 62453-2 apply.

3.1.1

bus interface module

module of a field device that provides the connection to the fieldbus

3.1.2

CP 3/1

Communication profile of CPF3, featuring asynchronous transmission; RS 485 (ANSI TIA/EIA RS-485-A); optional RS 485-IS; plastic fiber; glass multi mode fiber or glass single mode fiber; PCF fiber

3.1.3

iTeh STANDARD PREVIEW

CP 3/2

CP 3/2
Communication profile of CPF3, featuring synchronous transmission; manchester coded and bus powered (MBP); optional intrinsically safe (MBP-IS) and lower power (MBP-LP)

SIST EN 62453-303-1:2010

Symbols and tabbreviated terms og/standards/sist/7a59a77b-30ef-40b6-a73f-3.2 5cda1693e/sist-en-62453-303-1-2010

For the purposes of this document, the symbols and abbreviations given in IEC 62453-1, IEC 62453-2 and the following apply.

BIM Bus Interface Module

BMCP **Bus Master Configuration Part** General Station Description **GSD**

3.3 **Conventions**

3.3.1 Data type names and references to data types

The conventions for naming and referencing of data types are explained in IEC 62453-2, Clause A.1

3.3.2 Vocabulary for requirements

The following expressions are used when specifying requirements.

Usage of "shall" or "mandatory" No exceptions allowed.

Usage of "should" or "recommended" Strong recommendation. It may make sense in special

exceptional cases to differ from the described behaviour.

Usage of "can' or "optional' Function or behaviour may be provided, depending on defined

conditions.

3.3.3 Use of UML

Figures in this document are using the UML notation as defined in Annex A of IEC 62453-1.