# INTERNATIONAL STANDARD

ISO 10328-6

First edition 1996-12-15

# Prosthetics — Structural testing of lower-limb prostheses —

## iTeh SPart 6 ARD PREVIEW Loading parameters of supplementary structural tests

ISO 10328-6:1996

https://standards.iteh.ai/catalog/standards/sist/02bfea43-3626-418e-86a3-

Prothèses — Essais portant sur la structure des prothèses de membres inférieurs —

Partie 6: Paramètres de charge des essais supplémentaires de structure





Reference number ISO 10328-6:1996(E)

### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

## iTeh STANDARD PREVIEW

International Standard ISO 10328-6 was prepared by Technical Committee ISO/TC 168, *Prosthetics and orthotics*.

ISO 10328 consists of the following parts, under these general title Prosthetics — Structural testing of lower-limb prostheses dards/sist/02bfea43-3626-418e-86a3-285bc3ab80b0/iso-10328-6-1996

- Part 1: Test configurations
- Part 2: Test samples
- Part 3: Principal structural tests
- Part 4: Loading parameters of principal structural tests
- Part 5: Supplementary structural tests
- Part 6: Loading parameters of supplementary structural tests
- Part 7: Test submission document
- Part 8: Test report

#### © ISO 1996

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

## Introduction

Throughout all parts of ISO 10328, the term prosthesis means an externally applied device used to replace wholly, or in part, an absent or deficient limb segment.

As a result of concern in the international community about the need to provide prostheses that are safe in use, and also because of an awareness that test standards would assist the development of better prostheses, a series of meetings was held under the aegis of the International Society for Prosthetics and Orthotics (ISPO). The final meeting was held in Philadelphia, PA, USA in 1977, at which a preliminary consensus was reached on methods of testing and the required load values. From 1979 onwards this work was continued by ISO Technical Committee 168, leading to the development of this series of International Standards. The iTeh S characteristics different from those used in the consensus.

During use a prosthesis is subject to a series of load actions, each varying individually with time. The test methods specified in ISO 10328 use static and cyclic strength tests in which, with one exception, compound loadings https://standards.iteare/produced.by.the.application.of.a.single.test force.

#### 85bc3ab80b0/iso-10328-6-1996

The static tests relate to the worst loads generated in any activity. The cyclic tests relate to normal walking activities where loads occur regularly with each step. ISO 10328 specifies fatigue testing of structural components. The tests specified do not provide sufficient data to predict actual service life.

The evaluation of lower-limb prostheses and their components requires controlled field trials in addition to the laboratory tests specified in the different parts of ISO 10328.

The laboratory tests and field trials should be repeated when significant design changes are made to a load-bearing part of a prosthesis.

Ideally, additional laboratory tests should be carried out to deal with function, wear and tear, new material developments, environmental influences and user activities as part of the evaluation procedure. There are no standards for such tests, so appropriate procedures will need to be specified.

# iTeh This page intentionally left blankEVIEW (standards.iteh.ai)

<u>ISO 10328-6:1996</u> https://standards.iteh.ai/catalog/standards/sist/02bfea43-3626-418e-86a3-285bc3ab80b0/iso-10328-6-1996

## Prosthetics — Structural testing of lower-limb prostheses —

## Part 6:

Loading parameters of supplementary structural tests

## 1 Scope iTeh STANDARD PREVIEW

ISO 10328 specifies procedures for static and cyclic strength tests of lower-limb prostheses where, with one exception, compound loadings are produced by the application of a single test force. The compound loads in the test sample relate to the peak values of the components of loading which normally occur at different instants during the stance phase of walking.

https://standards.iteh.ai/catalog/standards/sist/02bfea43-3626-418e-86a3-

The tests described in ISO 10328 apply to transtibility (below-knee), knee-disarticulation and transfermoral (above-knee) prostheses.

NOTE — The tests may be performed on complete structures, on partial structures, or on individual components.

This part of ISO 10328 specifies

- the values of the offsets for setting up, aligning and loading the test sample, and
- the values of the test forces and moments to be applied for static and cyclic testing

for the different supplementary structural tests specified in ISO 10328-5 at the test load levels defined in ISO 10328-3.

#### 2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10328. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10328 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 10328-3:1996, Prosthetics — Structural testing of lower-limb prostheses — Part 3: Principal structural tests.

ISO 10328-5:1996, Prosthetics — Structural testing of lower-limb prostheses — Part 5: Supplementary structural tests.

#### 3 General

#### 3.1 Test load levels

Because of the significant differences in the characteristics of use of lower-limb prostheses by adults and by children, separate series of test load levels are required.

The series A test load levels designated as in table 1 shall be applied to lower-limb prostheses for adults. Details of each load level for supplementary structural tests are specified in clause 4 of this part of ISO 10328.

NOTE — The details of test load levels will be supplemented in due course.

#### Table 1 — Designation of test load levels for adults

|  | Test load level | A100 | A80 | A60 |
|--|-----------------|------|-----|-----|
|--|-----------------|------|-----|-----|

#### **3.2 Test forces and moments**

For ease in application of ISO 10328, all test forces and moments relevant to each supplementary structural test for adult lower-limb prostheses as specified in ISO 10328-5 are listed separately in tables 2 to 5.

## iTeh STANDARD PREVIEW

#### Table 2 — Moments of test in torsion (standards.iten.al)

|                              | <u>ISO 10328-6:1996</u>                                                                                                     | Refe           | Reference                 |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|--|--|
|                              | Test moment <u>130 10528-0,1990</u><br>https://standards.iteh.ai/catalog/standards/sist/02bfe<br>285bc3ab80b0/iso-10328-6-1 |                | This part of<br>ISO 10328 |  |  |
| Stabilizing torsional moment | $M_{\rm ustab} = 1 { m N}{ m \cdot}{ m m}$                                                                                  | 4.3.4<br>4.3.6 | Table 6                   |  |  |
| Settling torsional moment    | M <sub>uset</sub>                                                                                                           | 4.3.3          | Table 6                   |  |  |
| Maximum torsional moment     | M <sub>umax</sub>                                                                                                           | 4.3.6          | Table 6                   |  |  |

|                                        |                                                                                              | Refe                           | rence                           |
|----------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|
| Tes                                    | st force                                                                                     | ISO 10328-5                    | This part of<br>ISO 10328       |
| Static proof test force on heel        | $F_{1sp} = 1,75F_{1c}$                                                                       | 5.4.1.3<br>5.4.1.4<br>5.4.3.7  | Table 8                         |
| Static proof test force on forefoot    | $F_{2sp} = 1,75F_{2c}$                                                                       | 5.4.1.6<br>5.4.1.7<br>5.4.3.7  | Table 8                         |
| Static ultimate test force on heel     | $F_{1su} = 1.5F_{1sp}$ (for ductile failure)<br>$F_{1su} = 2.0F_{1sp}$ (for brittle failure) | 5.4.2.4<br>{5.4.2.3<br>5.4.2.4 | Table 8                         |
| Static ultimate test force on forefoot | $F_{2su} = 1,5F_{2sp}$ (for ductile failure)<br>$F_{2su} = 2,0F_{2sp}$ (for brittle failure) | 5.4.2.7<br>{5.4.2.6<br>5.4.2.7 | Table 8                         |
| Initial test force                     | $F_{\min} = 50 \text{ N}$                                                                    | 5.4.3.3                        | 8680 - CC 113 - C C C C C C C C |
| Cyclic test force on heel              | F <sub>1c</sub>                                                                              | 5.4.3.3<br>5.4.3.4             | Table 8                         |
| Cyclic test force on forefoot iTeh     | STANDARD PREVI                                                                               | E 5.4.3.3<br>5.4.3.4           | Table 8                         |
| Maximum cyclic test force on heel      | (standards.iteh.ai)                                                                          | 5.4.3.3                        | Table 8                         |
| Maximum cyclic test force on forefoot  | F <sub>2max</sub>                                                                            | 5.4.3.3                        | Table 8                         |

#### Table 3 — Test forces on ankle-foot devices

https://standards.iteh.ai/catalog/standards/sist/02bfea43-3626-418e-86a3-285bc3ab80b0/iso-10328-6-1996

#### Table 4 — Test force on knee flexion stops

|                   |                 | Refei       | rence                     |
|-------------------|-----------------|-------------|---------------------------|
| Test force        |                 | ISO 10328-5 | This part of<br>ISO 10328 |
| Static test force | F <sub>sp</sub> | 6.3.2       | Table 9                   |

|                            |                                | Reference                                        |                           |  |
|----------------------------|--------------------------------|--------------------------------------------------|---------------------------|--|
|                            | Test force                     | ISO 10328-5                                      | This part of<br>ISO 10328 |  |
| Stabilizing test force     | $F_{\rm stab} = 50 \ { m N}$   | 7.3.4<br>7.3.7<br>7.3.8<br>7.4.4                 |                           |  |
| Settling test force        | $F_{\rm set} = 0.8F_{\rm c}$   | 7.3.3<br>7.4.3<br>7.5.1.4                        |                           |  |
| Static proof test force    | $F_{\rm sp} = 1,75F_{\rm c}$   | 7.3.6<br>7.5.14                                  | Table 11                  |  |
| Static ultimate test force | $F_{\rm SU} = 2.0F_{\rm SD}$   | 7.4.7<br>7.4.8                                   | Table 11                  |  |
| Initial test force         | $F_{\rm min} = 50 \ { m N}$    | 7.5.1.5<br>7.5.1.8                               |                           |  |
| Cyclic test force          | $F_{\rm c}$                    | 7.3.3<br>7.4.3<br>7.5.1.4<br>7.5.1.9<br>7.5.1.10 | Table 11                  |  |
| Maximum cyclic test force  | IIeh <sub>F</sub> SIANDARD PRE | 7.5.1.7                                          | Table 11                  |  |

#### Table 5 — Test forces on knee locks

### (stanuarus.iten.ai)

ISO 10328-6:1996

# 4 Details of test load levels A100, <u>A80 and A60 10328-6-1996</u>

Tables 6 to 11 give details of test load levels for adult lower-limbs prostheses.

#### Table 6 — Torsional moments for all test load levels

(see ISO 10328-5:1996, clause 4)

| Static proof test load             |                                        |                                 |  |  |
|------------------------------------|----------------------------------------|---------------------------------|--|--|
| N·m                                |                                        |                                 |  |  |
| Settling moment, M <sub>uset</sub> | Stabilizing moment, M <sub>ustab</sub> | Twisting moment, M <sub>u</sub> |  |  |
| 3                                  | 1                                      | 35                              |  |  |

#### Table 7 — Directions of loading on ankle-foot devices for all test load levels (see ISO 10328-5:1996, clause 5)

| Angle                                 | Degrees |
|---------------------------------------|---------|
| $\Theta_{\rm uf1} = \Theta_{\rm fu1}$ | 15      |
| $\Theta_{\rm uf2} = \Theta_{\rm fu2}$ | 20      |
| $\Theta_{\sf fo}$                     | 7       |

|                    |                                  | Static<br>proof test   |         |         | Static Static ultimate  |                                                |                     |
|--------------------|----------------------------------|------------------------|---------|---------|-------------------------|------------------------------------------------|---------------------|
| Test load<br>level | Application<br>mode              | force, F <sub>sp</sub> |         |         | Range of F <sub>c</sub> | Fmax<br>(= F <sub>min</sub> + F <sub>c</sub> ) | No. of<br>cycles    |
|                    |                                  | N                      | 1       | N       | N                       | Ν                                              | (endurance)         |
|                    |                                  |                        | Ductile | Brittle |                         |                                                |                     |
| A100               | Heel loading, F <sub>1</sub>     | 2 240                  | 3 360   | 4 480   | 1 280                   | 1 330                                          | 2 × 10 <sup>6</sup> |
|                    | Forefoot loading, F <sub>2</sub> | 2 240                  | 3 360   | 4 480   | 1 280                   | 1 330                                          | 2 × 10 <sup>6</sup> |
| 400                | Heel loading, F <sub>1</sub>     | 2 065                  | 3 098   | 4 130   | 1 180                   | 1 230                                          | 2 × 10 <sup>6</sup> |
| A80                | Forefoot loading, F <sub>2</sub> | 2 065                  | 3 098   | 4 130   | 1 180                   | 1 230                                          | 2 × 10 <sup>6</sup> |
| A60                | Heel loading, F <sub>1</sub>     | 1 610                  | 2 415   | 3 220   | 920                     | 970                                            | 2 × 10 <sup>6</sup> |
| 700                | Forefoot loading, F <sub>2</sub> | 1 610                  | 2 415   | 3 220   | 920                     | 970                                            | 2 × 10 <sup>6</sup> |

#### Table 8 — Forces on ankle-foot devices for all test load levels (see ISO 10328-5:1996, clause 5)

# Table 9 — Loading parameters on knee flexion stops for all test load levels iTeh S (see ISO 10328-5:1996, clause 6)/ IF W

|          | Effective lever arms | Static proof test force, F <sub>sp</sub> |
|----------|----------------------|------------------------------------------|
| L        | mm                   | N N                                      |
| https:// | standards.ite        | ards/sist/02bfeal4359626-418e-86a        |

285bc3ab80b0/iso-10328-6-1996

# Table 10 — Offsets on knee locks for all test load levels (see ISO 10328-5:1996, clause 7)

|                 | Offsets        |       |  |  |
|-----------------|----------------|-------|--|--|
| Reference plane | Direction      | Value |  |  |
|                 |                | mm    |  |  |
| Knee            | fк             | - 50  |  |  |
|                 | ο <sub>K</sub> | 0     |  |  |
| Ankle           | ſA             | - 50  |  |  |
|                 | ο <sub>A</sub> | 0     |  |  |