
Designation: C 970 – 87 (Reapproved 1997)

Standard Practice for
Sampling Special Nuclear Materials in Multi-Container
Lots1

This standard is issued under the fixed designation C 970; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice provides an aid in designing a sampling
and analysis plan for the purpose of minimizing random error
in the measurement of the amount of nuclear material in a lot
consisting of several containers. The problem addressed is the
selection of the number of containers to be sampled, the
number of samples to be taken from each sampled container,
and the number of aliquot analyses to be performed on each
sample.

1.2 This practice provides examples for application as well
as the necessary development for understanding the statistics
involved. The uniqueness of most situations does not allow
presentation of step-by-step procedures for designing sampling
plans. It is recommended that a statistician experienced in
materials sampling be consulted when developing such plans.

1.3 The values stated in SI units are to be regarded as the
standard.

1.4 This standard does not purport to address all of the
safety problems, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
E 300 Practice for Sampling Industrial Chemicals2

2.2 Other Standard:
NUREG/CR-0087, Considerations for Sampling Nuclear

Materials for SNM Accounting Measurements3

3. Terminology Definitions

3.1 analysis of variance—the body of statistical theory,
methods, and practice in which the variation in a set of
measurements, as measured by the sum of squares of the

measurements, is partitioned into several component sums of
squares, each attributable to some meaningful cause (source of
variation).

3.2 confidence interval—(a) an interval estimator used to
bound the value of a population parameter and to which a
measure of confidence can be associated, and (b) the interval
estimate, based on a realization of a sample drawn from the
population of interest, that bounds the value of a population
parameter [with at least a stated confidence].

3.3 Estimation, Estimator, Estimate:
3.3.1 Estimation, in statistics, has a specific meaning, con-

siderably different from the common interpretation of guess-
ing, playing a hunch, or grabbing out of the air. Instead,
estimation is the process of following certain statistical prin-
ciples to derive an approximation (estimate) to the unknown
value of a population parameter. This estimate is based on the
information available in a sample drawn from the population.

3.4 estimator—a function of a sample (X1, X2, ... , Xn) used
to estimate a population parameter.

NOTE 1—An estimator is a random variable; therefore, not every
realization (x1, x2, ... , xn) of the sample (X1, X2, ... , Xn) will lead to the
same value (realization) of the estimator. An estimator can be a function
that, when evaluated, results in a single value or results in an interval or
region of values. In the former case the estimator is called a point
estimator, and in the latter case it is referred to as an interval estimator.

3.5 estimate, (a: n)—a particular value or values realized by
applying an estimator to a particular realization of a sample,
that is, to a particular set of sample values (x1, x2, ... , xn). (b:
v)—to use an estimator.

3.6 nested design— one of a particular class of experimental
designs, characterized by “nesting” of the sources of variation:
for each sampled value of a variable A, a given number of
values of a second variable B is sampled; for each of these, a
given number of values of the next variable C is sampled, etc.
The result is that each line of the “Expected Value of Mean
Square” column in an analysis of variance table contains all but
one of the terms of the preceding line.

3.7 random variable— a variable that takes on any one of
the values in its range according to a [fixed] probability
distribution. (Synonyms: chance variable, stochastic variable,
variate.)

1 This practice is under the jurisdiction of ASTM Committee C26 on Nuclear
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3.8 standard deviation (s.d.)—the positive square root of the
variance.

3.9 variance—(a: population) the expected value of the
square of the difference between a random variable and its own
expected value; that is, the second moment about the mean. (b:
sample) The sum of squared deviations from the sample mean
divided by one less than the number of values involved.

4. Significance and Use

4.1 Plans for sampling and analysis of nuclear material are
designed with two purposes in mind: the first is related to
material accountability and the second to material specifica-
tions.

4.2 For the accounting of special nuclear material, sampling
and analysis plans should be established to determine the
quantity of special nuclear material held in inventory, shipped
between buyers and sellers, or discarded. Likewise, material
specification requires the determination of the quantity of
nuclear material present. Inevitably there is uncertainty asso-
ciated with such measurements. This practice presents a tool
for developing sampling plans that control the random error
component of this uncertainty.

4.3 Precision and accuracy statements are highly desirable,
if not required, to qualify measurement methods. This practice
relates to“ precision” that is generally a statement on the
random error component of uncertainty.

5. Designing the Sampling Plan—Measuring Random
Error

5.1 The random error component of measurement uncer-
tainty is due to the various random errors involved in each
operation such as weighing, sampling, and analysis. The
quantification of the random error is usually given in terms of
the variance of the mean of the measurements. When analyzing
a lot of nuclear material to estimate the true concentration, p,
of a constituent such as uranium, the sample mean, p̄, is the
calculated estimator. The variance of p̄, s p̄

2 , is a measure of
the random error associated with the measurement process.
This practice deals primarily with random error; measurement
process systematic error will be discussed briefly in 8.2.

5.2 To estimate the true concentration, p, in a lot consisting
of N containers using a completely balanced nested design,
randomly select n of the N containers; from each of the n
containers, randomly select m samples; perform r laboratory
analyses on each of the nm samples. (It is assumed that the
amount of material withdrawn for samples is only a small
fraction of the total quantity of material.) Let

Xijk 5 measured concentration of the constituent in the k th analysis
on the jth sample from the i th container, or
5 p 1 bi 1 sij 1 aijk. (1)

where:
p = true concentration,
bi = effect due to container i,
s ij = effect due to the jth sample from container i, and
aijk = effect due to the kth analysis on the jth sample from

container i.
Then, if each container holds the same amount of material,

(Note 2), the sample mean

p̄ 5 X̄ 5
1

nmr (
i 5 1

n

(
j 5 1

m

(
k 5 1

r

Xijk (2)

is an estimator of the true value p. The true variance of p̄ is
then

sp̄
2 5

sb
2

n
~N 2 n!

N 2 1 1
ss

2

nm 1
sa

2

nmr (3)

where:
sb

2 = true variance among the N containers in the
given lot, defined as N−1(p i

2 − N−2((p i)
2;

ss
2 = true variance among samples taken from a

single container,
sa

2 = true variance of the laboratory analysis on
a homogeneous sample, and

N 2 n
N 2 1

= finite population correction factor.

NOTE 2—If the ith container has gi grams of material, then the true
average concentration is (1

Nwip i, where wi = g i/(1
N gi. However, the

variance of the corresponding estimate can still be calculated as shown in
this guideline; the true variance will be only slightly larger if the gi values
do not differ too much. For example, if the s.d. of the g i were 20 % of the
average gi, it can be shown that the s.d. of p would be underestimated by
about 2 % of the true standard deviation; for gi’s having s.d.’s of 10 % or
30 % of their average, the underestimation is 0.5 % or 4.5 % respectively.
Note that a set of 25 weights gi, uniformly spread from 3.3 to 6.7 kg, has
a s.d. equal to 20 % of the average (5 kg). (It is assumed that errors in the
estimation of net weights are insignificant compared to differences
between containers, sampling variability, and analytical uncertainty, or
both.)

5.3 Since the true variances s b
2, ss

2, and sa
2 are generally

unknown, they may be estimated using appropriate data. Those
data can be historical data obtained from analyzing production
samples, as long as there have been no changes in the process
with time. If such data are not available, as for example during
the start-up of a facility or after a change in process conditions,
a designed experiment is required to obtain estimates of the
variances.4

5.4 An estimate s p̄
2 of the variance of the sample mean can

be obtained from Eq 3, by inserting estimates of the variances
appearing there. If a designed experiment is performed, the
estimates can be obtained from the mean squares.

It is shown in Appendix X1 that estimates of the variances
are as follows:

sa
2 5 MS a, (4)

ss
2 5

1
r ~MS s 2 MSa!, (5)

sb
2 5

N 2 1
Nmr ~MSb 2 MS s!, (6)

where:
MSa, MSb, and MSs are the “mean squares” for analyses,

4 This topic can be found in many standard statistical texts, for example,
Brownlee, K. A., Statistical Theory and Methodology in Science and Engineering,
2nd ed., John Wiley and Sons, New York, 1965; Bennett, C. A., and Franklin, N. L.,
Statistical Analysis in Chemistry and the Chemical Industry, John Wiley and Sons,
New York, 1954; Mendenhall, William, Introduction to Linear Models and the
Design and Analysis of Experiments, Duxbury Press, Belmont, CA, 1968; and in
Jaech, J. L., “Statistical Methods in Nuclear Material Control,” (TID-26298,
USAEC, 1973).
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containers and samples. The estimated variance of p̄ is ob-
tained by replacing the true variances in Eq 3 by their
estimates:

s p̄
2 5

1
n

N 2 n
N 2 1 sb

2 1
1

nm s s
2 1

1
nmr sa

2 (7)

Finally, expressed in terms of the mean squares, this be-
comes

sp̄
2 5

1
nmr

N 2 n
N MS b 1

1
Nmr MS s. (8)

5.5 The variance of the sample mean, s p̄
2, or its estimate, s

p̄
2, is used to calculate confidence limits for the quantity and

concentration of nuclear materials. Therefore, it is desirable to
reduce this variance and, in this way, reduce the random error.
Obviously, this can be done by using large values of n, m, and
r (large number of samples and laboratory analyses). The cost
and time required by that approach could be prohibitive.
Another approach is to improve the overall process such that
the basic variances sb

2, ss
2, sa

2 are reduced.
5.6 Eq 8 gives an estimate of the variances p̄

2 for any given
n, m, and r and therefore can be used for comparing different
sampling plans. An example of two sampling plans involving
the same number of analyses but having different random
errors is given in Appendix X3.

5.7 When one has fixed resources within which the sam-
pling plan must function, the question arises as how to allocate
these resources to obtain the “best” sampling plan. Sections 6
and 7 discuss this problem when “cost” is considered. “Cost”
is used generically here—it need not be a monetary quantity; it
could be time or something else.

6. Determining Sample Sizes

6.1 There are two common situations in which sampling
plans must be developed for use in nuclear material measure-
ment when there are constraints on resources. In the first
situation a constraint is imposed upon the “cost” of sampling
and analysis. In this case, the problem is to find a plan that
minimizes the variance of the sample mean (minimizes random
error) subject to the cost constraint. In the second situation, a
constraint is imposed upon the variance of the sample mean
(upon the random error) and the problem is to find a plan which
minimizes cost subject to this constraint. Since this latter
problem is the most frequently encountered, methods for its
solution will be given. The former problem, for which the
solution technique closely parallels the one given, will be
covered in footnotes.

6.2 Component Variances Are Known:
6.2.1 If the variance constraint is expressed as a maximum

value for the width, 2D, of a confidence interval for p, it can be
transformed immediately to a maximum value for s p̄, by using
the relationship

D 5 ~Z12a/2!s p̄

(9)

where:
Z1-a/2 = value having a probability a/2 of being exceeded by a
standard normal variate.
Therefore, if D is limited to D o, say, then s p̄ is limited to D o/

Z1−a/2. Since the minimum cost is achieved when the constraint
is barely satisfied, we need to minimize cost subject to the
constraint

sp̄
2 5 K (10)

where K is a constant, either specified directly or computed
from Do and a.

6.2.2 When the underlying variances are known from pre-
vious history, the problem of achieving a minimum cost within
a stated confidence interval width reduces to finding a suitable
set of values for n, m, and r. In Appendix X2 it is shown that
the optimum r and m are given by

r 5
sa

ss
Scs

ca
D1 / 2

(11)

m 5
ss

sb
Scb

cs

N 2 1
N D1 / 2

(12)

where:
cb = marginal cost of choosing one additional container

and preparing it for sampling,
cs = marginal cost of drawing an additional sample from a

container and preparing it for analysis, and
ca = marginal cost of an additional laboratory analysis.

Therefore, the optimum values for r and m do not depend on
n, and in fact can be calculated immediately from the vari-
ances, the “costs,” and N.

6.2.3 Once m and r are determined and inserted into Eq 3, s

p̄
2 is seen to be a monotonic decreasing function of n, so that

one need only make n large enough to achieve the required
bound on s p̄

2(Note 3). Letting cs = ca = cb = 1.0 provides the
optimum values of r, m, and n when costs are considered equal.
In practice, the optimum values for m and r obtained this way
are unlikely to be integers. Unless these values are very close
to integers, it is prudent to consider both bracketing values, that
is, if the optimum value for r is 1.4, try both r = 1 and r = 2.
The reason is that the final value of n will generally be different
and it is not clear beforehand which set of values of r, m, and
n will achieve the required variance at minimum cost. It is also
possible to use different values of m (or r, or both) for different
containers or samples, or both, to obtain a non-integer “effec-
tive” value of m (or r, or both). In this case, p̄ should be
replaced by a weighted average; s p̄

2 becomes more compli-
cated; and the expected values of the mean squares also
become more complicated, as does the estimate of s p̄

2. The
advice of a statistician is strongly suggested if this approach is
being considered.

NOTE 3—The same values of m and r provide minimum variance for
given cost. When these are inserted into the cost function, it is seen to be
proportional to n, so that n should be chosen as large as the cost constraint
will allow.

6.2.4 An example with further discussion is given in Ap-
pendix X3.

6.3 Component Variances Are Not Known:
6.3.1 The approach to finding values for n, m, and r

described in Appendix X2 is also valid when the basic
variances are not known, provided some estimates of these
variances are available. As in 6.2, values for m and r can be
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