

SLOVENSKI STANDARD SIST EN 62439-5:2010

01-maj-2010

Industrijska komunikacijska omrežja za avtomatizacijo z visoko razpoložljivostjo -5. del: Protokol redundance Beacon (BRP) (IEC 62439-5:2010)

Industrial communication networks high availability automation networks - Part 5: Beacon Redundancy Protocol (BRP) (IEC 62439-5:2010)

Industrielle Kommunikationsnetze - Hochverfügbare Automatisierungsnetze - Teil 5: Funkbaken-Redundanz-Protokoli (BRR) (IEC 62439-5:2010)

Réseaux de communication industrielle - Réseaux d'automatisme à haute disponibilité -Partie 5 : Protocole de redondance à balise (BRP) (CEI 62439-5:2010)

https://standards.iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e-

Ta slovenski standard je istoveten z: EN 62439-5-2010

ICS:

25.040.01	Sistemi za avtomatizacijo v	Industrial automation
	industriji na splošno	systems in general
35.110	Omreževanje	Networking

SIST EN 62439-5:2010

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62439-5:2010 https://standards.iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e-21490d7d2da2/sist-en-62439-5-2010

SIST EN 62439-5:2010

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 62439-5

March 2010

ICS 25.040; 35.040

Supersedes EN 62439:2008 (partially)

English version

Industrial communication networks -High availability automation networks -Part 5: Beacon Redundancy Protocol (BRP)

(IEC 62439-5:2010)

Réseaux de communication industrielle -Réseaux d'automatisme à haute disponibilité -Partie 5 :Protocole de redondance à balise (BRP) (CEI 62439-5:2010) Industrielle Kommunikationsnetze -Hochverfügbare Automatisierungsnetze -Teil 5: Funkbaken-Redundanz-Protokoll (BRP) (IEC 62439-5:2010)

iTeh STANDARD PREVIEW (standards.iteh.ai)

This European Standard was approved by CENELEC on 2010-03-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration /sist/ce1b8bf9-6da7-46e6-b32e-21490d7d2da2/sist-en-62439-5-2010

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: Avenue Marnix 17, B - 1000 Brussels

© 2010 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 65C/583/FDIS, future edition 1 of IEC 62439-5, prepared by SC 65C, Industrial networks, of IEC TC 65, Industrial-process measurement, control and automation, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 62439-5 on 2010-03-01.

This EN 62439-5 together with EN 62439-1, EN 62439-2, EN 62439-3, EN 62439-4 and EN 62439-6 supersedes EN 62439:2008.

EN 62439-5:2010 includes the following significant technical changes with respect to EN 62439:2008:

- adding a calculation method for RSTP (rapid spanning tree protocol, IEEE 802.1Q),
- adding two new redundancy protocols: HSR (High-availability Seamless Redundancy) and DRP (Distributed Redundancy Protocol),
- moving former Clauses 1 to 4 (introduction, definitions, general aspects) and the Annexes (taxonomy, availability calculation) to EN 62439-1, which serves now as a base for the other documents,
- moving Clause 5 (MRP) to EN 62439-2 with minor editorial changes,
- moving Clause 6 (PRP) was to EN 62439-3 with minor editorial changes,
- moving Clause 7 (CRP) was to EN 62439-4 with minor editorial changes, and
- moving Clause 8 (BRP) was to EN 62439-5 with minor editorial changes,
- adding a method to calculate the maximum recovery time of RSTP in a restricted configuration (ring) to EN 62439-1 as Clause 8,
 (standards.iteh.ai)
- adding specifications of the HSR (High-availability Seamless Redundancy) protocol, which shares the principles of PRP to EN 62439-3 as Clause 5, and 9-5:2010
- introducing the DRP protocol as EN 62439-6. 21490d7d2da2/sist-en-62439-5-2010

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following dates were fixed:

-	latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2010-12-01
-	latest date by which the national standards conflicting with the EN have to be withdrawn	(dow)	2013-03-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 62439-5:2010 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 61158 series	NOTE Harmo	onized in EN 61158 series (not modified).
IEC 62439-2	NOTE Harmo	pnized as EN 62439-2.
IEC 62439-3	NOTE Harmo	pnized as EN 62439-3.
IEC 62439-4	NOTE Harmo	onized as EN 62439-4.
IEC 62439-6	NOTE Harmo	onized as EN 62439-6.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62439-5:2010 https://standards.iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e-21490d7d2da2/sist-en-62439-5-2010

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	Year	Title	<u>EN/HD</u>	Year
IEC 60050-191	-	International Electrotechnical Vocabulary (IEV) - Chapter 191: Dependability and quality of service	-	-
IEC 62439-1	2010	Industrial communication networks - High availability automation networks - Part 1: General concepts and calculation methods	EN 62439-1	2010
ISO/IEC/TR 8802-1	_ iT(Information technology - Telecommunications and information exchange between systems Local and metropolitan area networks - Specific requirements - Part 1: Overview of Local Area Network Standards	-	-
ISO/IEC 8802-3	2000	21490d7d2da2/sist-en-62439-5-2010 Information technology - Telecommunications and information exchange between systems Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access metho and physical layer specifications	-	-
IEEE 802.1D	-	IEEE Standard for Local and Metropoitan Area Networks - Media Access Control (MAC Bridges	>)	-
IEEE 802.1Q	-	IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged Local Area Networks	-	-

Edition 1.0 2010-02

INTERNATIONAL STANDARD

Industrial communication networks - High availability automation networks - Part 5: Beacon Redundancy Protocol (BRP) teh.ai)

SIST EN 62439-5:2010 https://standards.iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e-21490d7d2da2/sist-en-62439-5-2010

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

ICS 25.040, 35.040

ISBN 2-8318-1081-5

X

CONTENTS

- 2 -

FO	REWC)RD	.4
INT	RODU	JCTION	.6
1	Scop	e	.7
2	Norm	ative references	.7
3	Term	s, definitions, abbreviations, acronyms, and conventions	.7
	3.1	Terms and definitions	
	3.2	Abbreviations and acronyms	
	3.3	Conventions	
4	BRP	overview	.8
5	BRP	principle of operation	.8
	5.1	General	.8
	5.2	Network topology	.8
	5.3	Network components	10
	5.4	Rapid reconfiguration of network traffic	11
6	BRP	stack and fault detection features	11
7	BRP	protocol specification	13
	7.1	MAC addresses	13
	7.2	MAC addresses EtherType ITeh STANDARD PREVIEW	13
	7.3		
	7.4	Fault detection mechanisms near descrite h.ai)	13
	7.5	Beacon end node state diagram EN 62439-52010	21
8	BRP	message structurelards, iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e2	
	8.1	General	27
	8.2	ISO/IEC 8802-3 (IEEE 802.3) tagged frame header	28
	8.3	Beacon message	28
	8.4	Learning_Update message	28
	8.5	Failure_Notify message	29
	8.6	Path_Check_Request message	29
	8.7	Path_Check_Response message	
9	BRP	fault recovery time	29
10	BRP	service definition	30
		Supported services	
	10.2	Common service parameters	31
	10.3	Set_Node_Parameters service	31
	10.4	Get_Node_Parameters service	33
		Add_Node_Receive_Parameters service	
		Remove_Node_Receive_Parameters service	
		Get_Node_Status service	
		Management Information Base (MIB)	
Bib	liogra	ohy	11
- '-			~
-		– BRP star network example	
-		– BRP linear network example	
Fig	ure 3 ·	- BRP ring network example	10

Figure 4 – BRP stack architecture......11

62439-5 ©	IEC:2010(E)	
-----------	-------------	--

Figure 5 – BRP state diagram of end node	14
Figure 6 – BRP state diagram for beacon end node	21
Table 1 – BRP end node flags	16
Table 2 – BRP end node state transition table	. 17
Table 3 – BRP beacon end node flags	23
Table 4 – BRP beacon end node state transition table	24
Table 5 – BRP common header with ISO/IEC 8802-3 (IEEE 802.3) tagged frame format	28
Table 6 – BRP beacon message format	28
Table 7 – BRP Learning_Update message format	28
Table 8 – BRP Failure_Notify message format	29
Table 9 – BRP Path_Check_Request message format	29
Table 10 – BRP Path_Check_Response message format	29
Table 11 – BRP Set_Node_Parameters service parameters	32
Table 12 – BRP Get_Node_Parameters service parameters	34
Table 13 – BRP Add_Node_Receive_Parameters service parameters	. 36
Table 14 – BRP Remove_Node_Receive_Parameters service parameters	. 37
Table 15 – BRP Get_Node_Status service parameters	38

(standards.iteh.ai)

<u>SIST EN 62439-5:2010</u> https://standards.iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e-21490d7d2da2/sist-en-62439-5-2010

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS – HIGH AVAILABILITY AUTOMATION NETWORKS –

Part 5: Beacon Redundancy Protocol (BRP)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

International Standard IEC 62439-5 has been prepared by subcommittee 65C: Industrial Networks, of IEC technical committee 65: Industrial-process measurement, control and automation.

This standard cancels and replaces IEC 62439 published in 2008. This first edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to IEC 62439 (2008):

- adding a calculation method for RSTP (rapid spanning tree protocol, IEEE 802.1Q),
- adding two new redundancy protocols: HSR (High-availability Seamless Redundancy) and DRP (Distributed Redundancy Protocol),
- moving former Clauses 1 to 4 (introduction, definitions, general aspects) and the Annexes (taxonomy, availability calculation) to IEC 62439-1, which serves now as a base for the other documents,
- moving Clause 5 (MRP) to IEC 62439-2 with minor editorial changes,

- moving Clause 6 (PRP) was to IEC 62439-3 with minor editorial changes,
- moving Clause 7 (CRP) was to IEC 62439-4 with minor editorial changes, and
- moving Clause 8 (BRP) was to IEC 62439-5 with minor editorial changes,
- adding a method to calculate the maximum recovery time of RSTP in a restricted configuration (ring) to IEC 62439-1 as Clause 8,
- adding specifications of the HSR (High-availability Seamless Redundancy) protocol, which shares the principles of PRP to IEC 62439-3 as Clause 5, and
- introducing the DRP protocol as IEC 62439-6.

The text of this standard is based on the following documents:

FDIS	Report on voting
65C/583/FDIS	65C/589/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This International Standard is to be read in conjunction with IEC 62439-1:2010, *Industrial communication networks – High availability automation networks – Part 1: General concepts and calculation methods.*

A list of the IEC 62439 series can be found under the general title *Industrial communication networks* – *High availability automation networks*, on the IEC website.

(standards.iteh.ai)

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

<u>SIST EN 62439-5:2010</u>

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated of the lEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.

IMPORTANT – The "colour inside" logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

INTRODUCTION

- 6 -

The IEC 62439 series specifies relevant principles for high availability networks that meet the requirements for industrial automation networks.

In the fault-free state of the network, the protocols of the IEC 62439 series provide ISO/IEC 8802-3 (IEEE 802.3) compatible, reliable data communication, and preserve determinism of real-time data communication. In cases of fault, removal, and insertion of a component, they provide deterministic recovery times.

These protocols retain fully the typical Ethernet communication capabilities as used in the office world, so that the software involved remains applicable.

The market is in need of several network solutions, each with different performance characteristics and functional capabilities, matching diverse application requirements. These solutions support different redundancy topologies and mechanisms which are introduced in IEC 62439-1 and specified in the other Parts of the IEC 62439 series. IEC 62439-1 also distinguishes between the different solutions, giving guidance to the user.

The IEC 62439 series follows the general structure and terms of IEC 61158 series.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent concerning fault-tolerant Ethernet provided through the use of special interfaces providing duplicate ports that may be alternatively enabled with the same network address. Switching between the ports corrects for single faults in a two-way redundant system. This is given in Clauses 5 and 6.

IEC takes no position concerning the evidence, validity and scope of this patent right.

https://standards.iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e-

The holder of this patent right has assured the LEC that he/she is willing to negotiate licences either free of charge or under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with IEC. Information may be obtained from:

Rockwell Automation Technologies

1 Allen-Bradley Drive

Mayfield Heights

Ohio

USA

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://www.iec.ch/tctools/patent_decl.htm) maintain online data bases of patents relevant to their standards. Users are encouraged to consult the data bases for the most up to date information concerning patents.

INDUSTRIAL COMMUNICATION NETWORKS – HIGH AVAILABILITY AUTOMATION NETWORKS –

Part 5: Beacon Redundancy Protocol (BRP)

1 Scope

The IEC 62439 series is applicable to high-availability automation networks based on the ISO/IEC 8802-3 (IEEE 802.3) (Ethernet) technology.

This part of the IEC 62439 series specifies a redundancy protocol that is based on the duplication of the network, the redundancy protocol being executed within the end nodes, as opposed to a redundancy protocol built in the switches. Fast error detection is provided by two beacon nodes, the switchover decision is taken in every node individually. The cross-network connection capability enables single attached end nodes to be connected on either of the two networks.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-191, International Electrot<u>echnical_Vocabula</u>ry – Chapter 191: Dependability and quality of service https://standards.iteh.ai/catalog/standards/sist/ce1b8bf9-6da7-46e6-b32e-

21490d7d2da2/sist-en-62439-5-2010

IEC 62439-1:2010, Industrial communication networks – High availability automation networks – Part 1: General concepts and calculation methods

ISO/IEC/TR 8802-1, Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 1: Overview of Local Area Network Standards (IEEE 802.1)

ISO/IEC 8802-3:2000, Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications

IEEE 802.1D, IEEE standard for local Local and metropolitan area networks Media Access Control (MAC) Bridges

IEEE 802.1Q, IEEE standards for local and metropolitan area network. Virtual bridged local area networks

3 Terms, definitions, abbreviations, acronyms, and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-191, as well as in IEC 62439-1, apply.