

Edition 1.0 2018-06

INTERNATIONAL STANDARD

NORME **INTERNATIONALE**

Superconductivity Teh STANDARD PREVIEW Part 23: Residual resistance ratio measurement – Residual resistance ratio of Nb (Standards.iteh.al) superconductors

IEC 61788-23:2018

Supraconductivité – Supraconductivité – Partie 23: Mesurage du rapport de résistance résiduelle – Rapport de résistance résiduelle des supraconducteurs de Nb

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2018 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a 88 variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. 0244d384e240/icc

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms, containing 21,000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 21 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Edition 1.0 2018-06

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Superconductivity Teh STANDARD PREVIEW

Part 23: Residual resistance ratio measurement – Residual resistance ratio of Nb superconductors

IEC 61788-23:2018

Supraconductivité: "standards.itch.ai/catalog/standards/sist/7158cb4a-e209-4bef-b1a7-Partie 23: Mesurage du rapport de résistance résiduelle – Rapport de résistance résiduelle des supraconducteurs de Nb

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 17.220; 29.050

ISBN 978-2-8322-5719-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	FOREWORD						
IN	TRODU	ICTION	6				
1	Scop	e	7				
2	Norm	ative references	7				
3	Term	s and definitions	7				
4	Princ	iple	8				
5	Meas	surement apparatus	9				
-	5.1	Mandrel or base plate					
	5.2	Cryostat and support of mandrel or base plate					
6	-	imen preparation					
7	Data acquisition and analysis						
-	7.1	Data acquisition hardware					
	7.2	Resistance (<i>R</i> ₁) at room temperature					
	7.3	Residual resistance (R_2) just above the superconducting transition					
	7.4	Validation of the residual resistance measurement					
	7.5	Residual resistance ratio	. 13				
8	Unce	rtainty of the test method	. 13				
9	Test	reportiTeh STANDARD PREVIEW	. 13				
	9.1						
	9.2	General	. 13				
	9.3	Specimen information	. 13				
	9.4	Test conditionsandards, itch ai/catalog/standards/sist/7158cb4a-c209-4bcf-b1a7	. 14				
	9.5	RRR value					
An	inex A (Informative) Additional information relating to the measurement of RRR	. 15				
	A.1	Considerations for specimens and apparatus	. 15				
	A.2	Considerations for specimen mounting orientation					
	A.3	Alternative methods for increasing temperature of specimen above					
		superconducting transition temperature					
	A.3.1						
	A.3.2						
	A.3.3	Other test methods					
	A.4 A.4.1						
	A.4.1 A.4.2	-	-				
	A.4.2						
	A.4.4						
	A.4.5						
A.4.6							
An		informative) Uncertainty considerations					
	В.1	Overview					
	B.2	Definitions					
	B.3	Consideration of the uncertainty concept					
	B.4	Uncertainty evaluation example for TC 90 standards					

	formative) Uncertainty evaluation for resistance ratio measurement of Nb ctors	23
C.1 E	valuation of uncertainty	23
C.1.1	Room temperature measurement uncertainty	23
C.1.2	Cryogenic measurement uncertainty	24
C.1.3	Estimation of uncertainty for typical experimental conditions	26
C.2 R	ound robin test summary	26
Bibliography	/	28
transition	Relationship between temperature and resistance near the superconducting - Determination of the value of R_2 from a resistance versus time plot	
	- Graphical description of the uncertainty of regression related to the nt of R_2	25

Table B.1 – Output signals from two nominally identical extensometers	20
Table B.2 – Mean values of two output signals	20
Table B.3 – Experimental standard deviations of two output signals	20
Table B.4 – Standard uncertainties of two output signals	21
Table B.5 – Coefficient of variations of two output signals	21
Table C.1 – Uncertainty of measured parameters	26
Table C.1 – Uncertainty of measured parameters Table C.2 – RRR values obtained by round robin test	27

<u>IEC 61788-23:2018</u> https://standards.iteh.ai/catalog/standards/sist/7158cb4a-e209-4bef-b1a7-0244d384e240/iec-61788-23-2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SUPERCONDUCTIVITY -

Part 23: Residual resistance ratio measurement – Residual resistance ratio of Nb superconductors

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61788-23 has been prepared by IEC technical committee 90: Superconductivity.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
90/400/FDIS	90/403/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61788 series, published under the general title *Superconductivity,* can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'color inside' logo on the cover page of this publication indicates that it contains colors which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a color printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 61788-23:2018</u> https://standards.iteh.ai/catalog/standards/sist/7158cb4a-e209-4bef-b1a7-0244d384e240/iec-61788-23-2018

INTRODUCTION

High-purity niobium is the chief material used to make superconducting radio-frequency cavities. Similar grades of niobium may be used in the manufacture of superconducting wire. Procurement of raw materials and quality assurance of delivered products often use the residual resistance ratio (RRR) to specify or assess the purity of a metal. RRR is defined for non-superconducting metals as the ratio of electrical resistance measured at room temperature (293 K) to the resistance measured for the same specimen at low temperature (~4,2 K). The low-temperature value is often called the residual resistance. Higher purity is associated with higher values of RRR.

Niobium presents special problems due to its transformation to a superconducting state at ~9 K, so DC electrical resistance is effectively zero below this temperature. The definition above would then yield an infinite value for RRR. This document describes a test method to determine the residual resistance value by using a plot of the resistance to temperature as the test specimen is gradually warmed through the superconducting transition in the absence of an applied magnetic field. This results in a determination of the residual resistance at just above superconducting transition, ~10 K, from which RRR is subsequently determined.

International standards also exist to determine the residual resistance ratio of superconducting wires. In contrast to superconducting wires, which are usually a composite of a superconducting material and a non-superconducting material and the RRR value is representative of only the non-superconducting component, here the entire specimen is composed of superconducting niobium. Frequently, niobium is procured as a sheet, bar, tube, or rod, and not as a wire. For such forms, test specimens will likely be a few millimeters in the dimensions transverse to electric current flow. This difference is significant when making electrical resistance measurements, since niobium samples will likely be much longer than that for the same length-to-diameter ratio as a wire, and higher electrical current may be required to produce sufficient voltage signals. Guidance for sample, dimensions and electrical connections is provided in Annex A. Test apparatus should also take into consideration aspects such as the orientation of a test specimen relative to the liquid helium surface, accessibility through ports on common liquid helium dewars, design of current contacts, and minimization of thermal gradients over long specimen lengths. These aspects distinguish the present document from similar wire standards.

Other test methods have been used to determine RRR. Some methods use a measurement at a temperature other than 293 K for the high resistance value. Some methods use extrapolations at 4,2 K in the absence of an applied magnetic field for the low resistance value. Other methods use an applied magnetic field to suppress superconductivity at 4,2 K. A comparison between this document and some other test methods is presented in Annex A. It should be noted that systematic differences of up to 10 % are produced by these other methods, which is larger than the target uncertainty of this document. Care should therefore be taken to apply this document or the appropriate corrections listed in Annex A according to the test method used.

Whenever possible, this test method should be transferred to vendors and collaborators who also perform RRR measurements. To promote consistency, the results of inter-laboratory comparisons are described in Annex C.

SUPERCONDUCTIVITY -

Part 23: Residual resistance ratio measurement -**Residual resistance ratio of Nb superconductors**

1 Scope

This part of IEC 61788 addresses a test method for the determination of the residual resistance ratio (RRR), r_{BRR}, of cavity-grade niobium. This method is intended for high-purity niobium grades with $15 < r_{RRR} < 600$. The test method should be valid for specimens with rectangular or round cross-section, cross-sectional area greater than 1 mm² but less than 20 mm², and a length not less than 10 nor more than 25 times the width or diameter.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. iTeh STANDARD PREVIEW

IEC 60050-815, International Electrotechnical Vocabulary Part 815: Superconductivity (available at: www.electropedia.org)

IEC 61788-23:2018

Terms and definitions ds.iteh.ai/catalog/standards/sist/7158cb4a-e209-4bef-b1a7-3 0244d384e240/iec-61788-23-2018

For the purposes of this document, the terms and definitions given in IEC 60050-815 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/ ٠
- ISO Online browsing platform: available at http://www.iso.org/obp •

31 residual resistance ratio RRR

ratio of resistance at room temperature to the resistance just above the superconducting transition

$$r_{\rm RRR} = R_1 / R_2 \tag{1}$$

where R_1 is the resistance at 293 K and R_2 is the resistance just above the superconducting transition, at ~10 K.

iTeh STANDARD PREVIEW

Note 1 to entry: In this document, the room temperature is defined as 20 °C = 293 K, and r_{RRR} is obtained as follows: Figure 1 shows schematically resistance versus temperature data and the graphical procedure used to determine the value of R_2 . In this figure, the region of maximum slope is extrapolated upward in resistance, as shown by line (a), and the region of minimum slope at temperatures above the transition temperature is extrapolated downward in temperature, as shown by line (b). The intersection of these extrapolations at point A determines the value of R_2 as well as a temperature value T_c^* .

Note 2 to entry: The value T_{c}^{*} is similar to the transition value defined in [1] ¹, and should not be confused with the value defined at the midpoint of the transition, called T_{c}^{*} in [2].

Note 3 to entry: Some standards or documented techniques, e.g. [3][4][5], define r_{RRR} with the value of R_1 determined at a temperature other than 293 K, or the value of R_2 determined at a temperature below the superconducting transition. The user of this document should be alert for such differences in definition.

Note 4 to entry: This note applies to the French language only.

4 Principle

The 4-point DC electrical resistance technique shall be performed both at room temperature and at cryogenic temperature. The test may be done either as a function of temperature or as a function of time with increasing temperature.

The relative combined standard uncertainty of this method is 3 % with coverage factor 2.

Measurements shall have the following attributes:

 a) Measuring current is sufficiently high to provide voltage signals of the order of 1 μV. For electrical safety, maximum current density should never exceed 1 A mm⁻².

¹ Numbers in square brackets refer to the Bibliography.

- b) Contact resistance for current leads is sufficiently low to avoid excessive heating of the sample. Typical cryogenic measurement conditions require power dissipation at contacts to be less than 1 mW.
- c) Sample sizes shall be sufficiently large to minimize effects from cutting and handling damage. Typical samples are 1 mm to 3 mm in cross-section dimension and > 5 mm² in cross-sectional area.
- d) Sample length shall be at least 10 times and not more than 25 times the width or diameter.

Annex A discusses considerations for sample dimensions and measuring current.

5 Measurement apparatus

5.1 Mandrel or base plate

A straight mandrel or base plate shall be used to support the specimen. Possible materials of construction include pure copper, pure aluminum, pure silver, electrical grades of Cu-Zr, Cu-Cr-Zr, Cu-Be, and other copper alloys, electrical grades of Al-Mg, Al-Ag, and other aluminum alloys, and electrical grades of silver alloys. These provide high thermal conductivity and serve to remove thermal gradients during measurement. Care should be taken to insulate the specimen from the mandrel. Possible insulating materials include polyethylene terephthalate, polyester, and polytetrafluoroethylene, which may be applied as foils, tapes, or coatings. Glass-fiber reinforced epoxy or other composite materials with good thermal conductivity at cryogenic temperature may also be used.

iTeh STANDARD PREVIEW

The base plate should have a clean and smooth surface finish. There should be no burrs, ridges, seams, or other asperities that may affect the specimen. High purity niobium specimens are soft and are susceptible to indentation by surface flaws, and such indentations may alter the sample and invalidate the resistance measurement.

<u>IEC 61788-23:2018</u>

https://standards.iteh.ai/catalog/standards/sist/7158cb4a-e209-4bef-b1a7-The mandrel or base plate shall support the entire length and width of the specimen. Mandrel or base plate geometry should not impose a bending strain of more than 0,2 % on the sample.

A thermometer accurate to 0,1 K is helpful but not required. The mandrel or base plate may incorporate a mounting for a cryogenic thermometer directly against the body of the mandrel or base plate and near the center of the test specimen.

Practical base plates are at least 30 mm in length to accommodate assembly of pieces and handling of samples by human hands. Multiple samples may be mounted against a single base plate.

5.2 Cryostat and support of mandrel or base plate

The apparatus shall make provisions for mechanical support of the mandrel or base plate. In addition, such support shall provide electrical leads to carry currents for samples and thermometers, and measure their voltages. For R_1 and R_2 measurements, the support shall permit current to flow through only the sample, so that the entire resulting voltage measured is only that generated by the sample.

The support structure shall permit measurement of both R_1 and R_2 without dismounting or remounting the test specimen. Measurement of R_2 shall require the use of a cryostat, which shall, moreover, integrate with the support.

The cryostat shall include a liquid helium reservoir at the bottom of a substantial vertical column. A support structure shall accommodate the raising and lowering of the sample into or out of the helium bath. In addition, anchoring of the sample position, either while immersed in liquid helium or suspended above the surface of the liquid at an arbitrary height, shall be provided. Such suspension permits the equilibration of temperature during measurement and slow increase of temperature with height above the helium bath. Alternately, immersion of the sample into the bath followed by reduction of the bath level via boil-off or pressurized transfer can also be used to vary temperature.

A heater may be employed to warm the mandrel or base plate. Care should be taken to distribute the heater along the mandrel and avoid excessive power settings. For instance, a point source of 1 W heat input operating at the center of a 1 cm² mandrel upon which a 5 cm sample is mounted could produce thermal gradients of 2,5 K along the sample if the thermal conductivity is 100 W m⁻¹ K⁻¹.

Proper cryogenic techniques shall be followed for the construction of the cryostat and apparatus. This includes the use of low thermal conductivity materials such as thin-walled stainless steel tubes, composite materials, ceramics, and insulation, to prevent excessive boil-off due to heat conduction from the surroundings. A can or shield may surround the base plate or mandrel with mounted sample to improve thermal stability. Provisions for pressure relief and vacuum isolation of the liquid helium should be incorporated with the apparatus.

6 Specimen preparation

High-purity niobium is quite malleable, and even the slightest force can produce deformation of

High-purity niobium is quite malieable, and even the slightest force can produce deformation of the material. Since dislocations are one source of electron scattering, specimen deformation may inadvertently contribute to the residual resistivity and affect the test result. Therefore, special protocols shall be observed when preparing the specimen. Cutting techniques shall avoid heat and strain to the extent possible. Discharge machining, fluid-jet cutting, or low-speed conventional machining are acceptable and widely-used techniques for applications using high-purity niobium. Specimens cut from larger pieces should be protected and immobilized against a support piece during transport. Operations to de-burr samples should be done with great care to not bend, excessively heat or otherwise damage the sample. Light sanding with fine paper is one acceptable approach.

Specimens should be rectangular or circular bars with uniform cross-section. Long sides of the specimen shall be parallel. Any twisting or curvature shall be avoided to ensure that bending or torsion is not applied to the test specimen during mounting to the mandrel or base plate. Specimens that form an arc or a "U" shape are acceptable provided that the entire curvature can be supported on a plane, without applying torsion to the bent specimen.

The specimen shall be clean and have no trace of residues from cutting fluids or any other surface contaminants. Degreasing with solvents, followed by ultrasonic cleaning using a mild water-based detergent, followed by rinsing with distilled or ultra-pure water, then drying in air, is preferred for cleaning residues. Chemical etching to clean the surface poses a risk of introducing contaminants, especially hydrogen and oxygen, and should be avoided. Gentle mechanical polishing of the regions where voltage taps and current leads attach is usually sufficient to remove surface oxides. Coating these regions with indium foil or another metal, for example by evaporation or sputtering, is an acceptable method to protect polished contacts provided care is taken to avoid coating the entire specimen.

The test specimen shall be a single piece and shall not include any joints or splices.

A mechanical method shall be used to affix the test specimen to the mandrel or base plate. Special care shall be taken during the installation and instrumentation of the specimen to ensure that there is no excessive force, bending strain, tensile strain, or torsion applied to the specimen. The test specimen shall be instrumented with current contacts near each end of the specimen and a pair of voltage contacts over the central portion between the current contacts (i.e. a 4-point measurement technique). The voltage contacts shall be separated from the current contacts by a distance no smaller than the largest dimension (width, thickness, or diameter) perpendicular to the specimen length.

7 Data acquisition and analysis

7.1 Data acquisition hardware

Modern power supplies can be computer controlled and come with a variety of features that permit remote control of the current output. Use of such power supplies is not required but could greatly enable automation of the data acquisition. Pulsed modes permit application of current only when voltage signals are being acquired, thereby removing heat generated in the sample during the off cycle. If pulsed current application is used, the pulse duration shall include ample periods for voltage signals to settle and be filtered.

Some power supplies incorporate an internal shunt to regulate the output current. If such a power supply is used, the internal shunt shall be calibrated periodically with an external shunt and voltage measurement.

The test set-up may establish an arbitrary baseline voltage U_0 , which might be detectable when the sample is in the superconducting state and the power supply is off. The value U_0 can drift over time due to changes in the thermal environment and other effects. More complex hardware includes compensation for drift and automatic nulling such that the time average of U_0 is 0. Digital voltage meters are not required but greatly enhance the data acquisition. Besides compensation for drift and voltage nulling, filtering and internal compensation for thermally-induced voltages can improve the faccuracy of the voltage measurement. Filtering should average voltage signals for a time at least as long as the thermal time constant of the apparatus at low temperature, typically of the order of 0.1 s to 10 s. Care should be taken to understand how voltages are corrected for drift and thermal effects. Sensitive voltage meters, especially nanovolt meters, require a pre-amplifier that needs to be at thermal equilibrium, which may require several hours of operation in advance of the measurement.

Data acquisition via computer greatly facilitates the recording and reporting of data.

7.2 Resistance (R_1) at room temperature

The ambient temperature T_1 of the measurement laboratory shall be measured. A specimen current I_1 shall be applied per the requirements in Clause 4. The resulting voltage U_1 shall be recorded together with I_1 and T_1 . The resistance shall be determined by

$$R_{1} = \frac{U_{1}}{I_{1}} \Big[1 - 0,0037 \ \left(T_{1} - 293 \right) \Big]$$
⁽²⁾

with T_1 in units of kelvin. The coefficient 0,003 7 reflects the experimentally observed rate of change of resistance with temperature given in [5].

7.3 Residual resistance (R_2) just above the superconducting transition

The measurement of R_2 shall be made with the sample still mounted on the mandrel or base plate for the measurement of R_1 .

After the boil-off rate is suitable for measurements, a voltage measurement U_0 shall be recorded while the sample is immersed in liquid helium. The sample should be in the superconducting state under these conditions. Current I_2 shall then be applied per requirements of Clause 4 and with considerations of Clause 5. Voltage readings shall be acquired for forward and reverse current polarity, U_0^+ and U_0^- respectively. Any differences between U_0 , U_0^+ , and U_0^- shall be recorded.

The specimen shall then be gradually warmed so that a transition from the superconducting state into the normal state occurs gradually. An apparatus that conforms to Clause 6 will permit gradual warming of the specimen by raising the level of the mandrel above the level of the liquid helium bath, for example. Two voltages U_2^+ and U_2^- shall be measured almost simultaneously with the application of the same measuring current I_2 with forward and reverse polarity, respectively. The current shall not be applied when measurements are not being recorded. The voltage U_2 shall be determined by

iTeh STANDARD PREVIEW
(standa
$$U_2^{\dagger}$$
, U_2^{\dagger} , U

IEC 61788-23:2018

where it should be noted that the sign of U_2 is opposite that of U_2^+ ; 1.e. Formula (3) indicates an average of the two numbers approximately equal in agnitude. A resistance R shall be determined from the voltage by

$$R = \frac{U_2}{I_2} \tag{4}$$

As the sample is warmed, values R shall be recorded as a function of either the temperature T determined by the thermometer attached to the mandrel or base plate, or the time t. Graphical aids and data analysis software are acceptable tools for plotting the resistance versus temperature curve or resistance versus time curve and performing extrapolations.

A resistance versus temperature curve shall thus be obtained as in Figure 1. The resistance versus temperature curve shall be continuously recorded until a temperature of at least 15 K is reached. The resistance versus temperature curve shall be analyzed by drawing a line through the region of steepest slope near the midpoint of the resistance rise, line (a) on Figure 1, and extrapolating this line sufficiently above the value of *R* recorded at 15 K. A second line shall be drawn through the region of the resistance versus temperature curve above the transition, line (b) in Figure 1, and this line shall be extrapolated to sufficiently lower temperature such that it intersects with line (a). The intersection is labelled as point A in Figure 1. The value of temperature *R*₂ corresponding to intersection point A shall be recorded, along with the value of temperature curve above temperature curve above temperature curve above temperature curve above the transition.

 $T_{\rm c}^{\star}$ corresponding to intersection point A.

IEC 61788-23:2018 © IEC 2018

7.4 Validation of the residual resistance measurement

The determination of R_2 shall be valid if all the following criteria are met: Interfering voltages shall be such that

- 13 -

$$\frac{\left|U_{0}^{+}-U_{0}^{-}\right|}{I_{2}R_{2}} < 3\%$$
(5)

Thermal drift or scatter shall be such that, for consecutive values U_2^+ and U_2^- recorded with temperature near T_{c}^{*} ,

$$\frac{\left|U_{2}^{+}+U_{2}^{-}\right|}{I_{2}R_{2}} < 3\% \tag{6}$$

The ambient temperature shall be such that

$$283 \text{ K} < T_1 < 303 \text{ K} \tag{7}$$

Residual resistance ratio TANDARD PREVIEW 7.5

The RRR shall be calculated using Formula (1) and recorded.)

Uncertainty of the test method <u>IEC 61788-23:2018</u> https://standards.iteh.ai/catalog/standards/sist/7158cb4a-e209-4bef-b1a7-8

0244d384e240/iec-61788-23-2018 Based on the outcome of inter-laboratory comparison, discussed fully in Clause C.2, a typical uncertainty across laboratories of 0,3 % to 1,3 % has been obtained.

9 **Test report**

9.1 General

A test report shall be provided to summarize the findings of the RRR test procedure.

9.2 **Test information**

The following shall be included to record the test information:

- a) date and time of the measurement;
- b) operator name;
- c) version of the procedure followed.

Specimen information 9.3

The following information pertinent to the specimen shall be included in the test report:

- a) vendor's heat treatment, fabrication, or other tracking information such as a purchase order number;
- b) sheet or piece identification number, if any;
- c) specimen shape and orientation relative to the helium bath.