SLOVENSKI STANDARD SIST EN 61280-1-3:2010 01-september-2010 Nadomešča: SIST EN 61280-1-3:2001 Postopki preskušanja optičnega komunikacijskega podsistema - 1-3. del: Splošni komunikacijski podsistemi - Merjenje osrednje valovne dolžine in širine spektra (IEC 61280-1-3:2010) Fibre optic communication subsystem test procedures - Part 1-3: General communication subsystems - Central wavelength and spectral width measurement (IEC 61280-1-3:2010) iTeh STANDARD PREVIEW Lichtwellenleiter- Kommunikationsuntersysteme; Grundlegende Prüfverfahren - Teil 1-3: Prüfverfahren für allgemeine Kommunikationsuntersysteme - Messung von Mittelwellenlänge und Spektralbreite (IEC 61280-1-3:2010) https://standards.iteh.a/catalog/standards/sist/de82ddd-7e2d-4309-bf6b-9bee1079df63/sist-en-61280-1-3-2010 Procédures d'essai des sous-systèmes de télécommunication à fibres optiques - Partie 1 -3: Sous-systèmes généraux de télécommunication - Mesure de la longueur d'onde centrale et de la largeur spectrale (CEI 61280-1-3:2010) Ta slovenski standard je istoveten z: EN 61280-1-3:2010 ICS: 33.180.01 Sistemi z optičnimi vlakni na Fibre optic systems in splošno general SIST EN 61280-1-3:2010 en,fr SIST EN 61280-1-3:2010 # iTeh STANDARD PREVIEW (standards.iteh.ai) EUROPEAN STANDARD EN 61280-1-3 NORME FUROPÉENNE **EUROPÄISCHE NORM** May 2010 ICS 33.180.01 Supersedes EN 61280-1-3:1999 English version ### Fibre optic communication subsystem test procedures -Part 1-3: General communication subsystems -Central wavelength and spectral width measurement (IEC 61280-1-3:2010) Procédures d'essai des sous-systèmes de télécommunication à fibres optiques -Partie 1-3: Sous-systèmes généraux de télécommunication -Mesure de la longueur d'onde centrale et de la largeur spectrale (CEI 61280-1-3:2010) reh STANDARD Pund Spektralbreite (IEC 61280-1-3:2010) Lichtwellenleiter-Kommunikationsuntersysteme: Grundlegende Prüfverfahren -Teil 1-3: Prüfverfahren für allgemeine Kommunikationsuntersysteme -Messung von Mittelwellenlänge (standards.iteh.ai) #### SIST EN 61280-1-3:2010 https://standards.iteh.ai/catalog/standards/sist/de8a2dd3-7e2d-4309-bf6b- This European Standard was approved by CENELEC on 2010-05-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Iraly, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. ### **CENELEC** European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Management Centre: Avenue Marnix 17, B - 1000 Brussels #### **Foreword** The text of document 86C/887/CDV, future edition 2 of IEC 61280-1-3, prepared by SC 86C, Fibre optic systems and active devices, of IEC TC 86, Fibre optics, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61280-1-3 on 2010-05-01. This European Standard supersedes EN 61280-1-3:1999. This EN 61280-1-3:2010 constitutes a technical revision with changes reflecting new laser technology and includes a second method modified for state of the art instrumentation. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights. The following dates were fixed: latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2011-02-01 latest date by which the national standards conflicting with the EN have to be withdrawn (dow) 2013-05-01 Annex ZA has been added by CENELEC. ### iTeh STANDARD PREVIEW (standards it ebusi) The text of the International Standard IEC 61280-1 \times 3:2010 was approved by CENELEC as a European Standard without any modification, iteh ai/catalog/standards/sist/de8a2dd3-7e2d-4309-bf6b- 9bee1079df63/sist-en-61280-1-3-2010 # Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|--|------------|-------------| | IEC 60825-1 | - | Safety of laser products -
Part 1: Equipment classification and
requirements | EN 60825-1 | - | | IEC 62129 | - | Calibration of optical spectrum analyzers | EN 62129 | - | # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN 61280-1-3:2010 # iTeh STANDARD PREVIEW (standards.iteh.ai) ### IEC 61280-1-3 Edition 2.0 2010-03 # INTERNATIONAL STANDARD Fibre optic communication subsystem test procedures E W Part 1-3: General communication subsystems — Central wavelength and spectral width measurement <u>SIST EN 61280-1-3:2010</u> https://standards.iteh.ai/catalog/standards/sist/de8a2dd3-7e2d-4309-bf6b-9bee1079df63/sist-en-61280-1-3-2010 INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE ICS 33.180.01 ISBN 2-8318-1082-3 ### CONTENTS | FΟ | REW | ORD | 3 | | | |-----|-----------------------|---|----|--|--| | 1 | Scop | e | 5 | | | | 2 | Normative references | | | | | | 3 | Terms and definitions | | | | | | | 3.1 | Wavelength | 5 | | | | | 3.2 | Spectral width | 6 | | | | | 3.3 | Additional spectral characteristics | 6 | | | | 4 | Apparatus | | | | | | | 4.1 | Calibrated optical spectrum analyzer | 6 | | | | | 4.2 | Power supplies | 7 | | | | | 4.3 | Input signal source or modulator | 7 | | | | | 4.4 | Test cord | 7 | | | | 5 | Test | sample | 7 | | | | 6 | Proc | edure (Method A) | 7 | | | | | 6.1 | General | 7 | | | | | 6.2 | Setup | 7 | | | | | 6.3 | Adjustment of spectrum analyzer controls | | | | | 7 | Proc | edure (Method Beh. STANDARD PREVIEW | 8 | | | | | 7.1 | | | | | | | 7.2 | Setup | 9 | | | | | 7.3 | Continuous LED and SLM spectra | | | | | | 7.4 | Discrete MLM spectra iteh.ai/catalog/standards/sist/de8a2dd3-7e2d-4309-bf6b- | 9 | | | | | 7.5 | Continuous SLM spectrae1079df63/sist-en-61280-1-3-2010 | | | | | 8 | Calc | ulation | 10 | | | | | 8.1 | General | 10 | | | | | 8.2 | Centre wavelength | 10 | | | | | 8.3 | Centroidal wavelength | 10 | | | | | 8.4 | Peak wavelength | 11 | | | | | 8.5 | RMS spectral width ($\Delta\lambda_{\mbox{rms}}$) | 11 | | | | | 8.6 | n-dB spectral width ($\Delta\lambda_{n-dB}$) | 11 | | | | | 8.7 | Full-width half-maximum spectral width ($\Delta\lambda_{fwhm}$) | 11 | | | | | 8.8 | Side-mode suppression ratio (SMSR) | 12 | | | | 9 | Test results | | | | | | | 9.1 | Required information | 12 | | | | | 9.2 | Information to be available on request | 12 | | | | 10 | Exan | nple results | 12 | | | | Fig | ure 1 | - Example of a LED optical spectrum | 13 | | | | Fig | ure 2 | - Typical spectrum analyzer output for an MLM laser | 15 | | | | | | – $\Delta \lambda_{fwhm}$ spectral width measurement for MLM laser | | | | | | | – $\Delta \lambda_{fwhm}$ spectral width calculation for MLM laser | | | | | | | – Peak emission wavelength and $\Delta\lambda_{30-{ m dB}}$ measurement for SLM laser | | | | | | | - Measurement points for LED spectrum from Figure 1 | | | | | | | | | | | | ıaı | ле 2 - | - RMS spectral characterization | 14 | | | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION ## FIBRE OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES – ## Part 1-3: General communication subsystems – Central wavelength and spectral width measurement #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 9bee1079df63/sist-en-61280-1-3-2010 - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61280-1-3 has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86. This second edition cancels and replaces the first edition published in 1998. This edition constitutes a technical revision with changes reflecting new laser technology and includes a second method modified for state of the art instrumentation. The text of this standard is based on the following documents: | CDV | Report on voting | |--------------|------------------| | 86C/ 887/CDV | 86C/ 937/RVC | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. 61280-1-3 © IEC:2010(E) **-4-** This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts of the IEC 61280 series can be found, under the general title *Fibre optic communication subsystem test procedures*, on the IEC website. The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - · reconfirmed. - · withdrawn, - replaced by a revised edition, or - · amended. A bilingual version of this publication may be issued at a later date. # iTeh STANDARD PREVIEW (standards.iteh.ai) 61280-1-3 © IEC:2010(E) - 5 - ## FIBRE OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES - ## Part 1-3: General communication subsystems – Central wavelength and spectral width measurement #### 1 Scope This part of IEC 61280 provides definitions and measure procedures for several wavelength and spectral width properties of an optical spectrum associated with a fibre optic communication subsystem, an optical transmitter, or other light sources used in the operation or test of communication subsystems. The measurement is done for the purpose of system construction and/or maintenance. In the case of communication subsystem signals, the optical transmitter is typically under modulation. NOTE Different properties may be appropriate to different spectral types, such as continuous spectra characteristic of light-emitting diodes (LEDs), and multilongitudinal-mode (MLM), multitransverse-mode (MTM) and single-longitudinal mode (SLM) spectra, characteristic of laser diodes (LDs). ### iTeh STANDARD PREVIEW #### 2 Normative references ### (standards.iteh.ai) The following referenced documents are indispensable for the application of this document. For dated references, only the edition of the references, the latest edition of the referenced document (including any amendments) applies d-4309-bf6b- 9bee1079df63/sist-en-61280-1-3-2010 IEC 60825-1, Safety of laser products - Part 1: Equipment classification and requirements IEC 62129, Calibration of optical spectrum analyzers #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 Wavelength NOTE The following wavelength terms provide quantitative definitions for the describing the central wavelength of a spectrum. In this standard, "central wavelength" is a general category label for these terms. #### 3.1.1 #### centre wavelength λ_0 also called "half-power mid-point", the mean of the closest spaced half-power wavelengths in an optical spectrum, one above and one below the peak wavelength #### 3.1.2 #### half-power wavelength λ_{3dE} a wavelength corresponding to a half peak power value of the optical spectrum