

Edition 1.0 2016-10

INTERNATIONAL STANDARD

Metallic communication cable test methods - PREVIEW

Part 4-16: Electromagnetic compatibility (EMC) – Extension of the frequency range to higher frequencies for transfer impedance and to lower frequencies for screening attenuation measurements using the triaxial set-up

https://standards.iteh.ai/catalog/standards/sist/847c9b06-fd67-4b88-9c05-a33b72c57cdf/iec-62153-4-16-2016

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2016 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00

CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. standard

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and 3-4

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or also once a month by emailtps://standards.itch.ai/catalog/standarcheed.futther/assistance/please.contact the Customer Service a33b72c57cdf/iec-62Gentre_csc@iec.ch.

Edition 1.0 2016-10

INTERNATIONAL STANDARD

Metallic communication cable test methods PREVIEW

Part 4-16: Electromagnetic compatibility (EMC) – Extension of the frequency range to higher frequencies for transfer impedance and to lower frequencies for screening attenuation measurements using the triaxial set-up

https://standards.iteh.ai/catalog/standards/sist/847c9b06-fd67-4b88-9c05-a33b72c57cdf/iec-62153-4-16-2016

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.120.10 ISBN 978-2-8322-3707-6

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
1 Scope	5
2 Normative references	5
3 Acronyms	5
4 Overview	6
5 Frequency behaviour of the triaxial set-up	7
6 Extrapolation of measurement results	9
7 Determination of the relative dielectric permittivity and impedance	12
7.1 General	15
Bibliography	18
Figure 1 – Simulation of the scattering parameter S ₂₁ (left hand scale) and the transfer impedance (right hand scale) for a single braid screen	6
Figure 2 – Magnitude of the frequency behaviour (F) in logarithmic frequency scale for a coupling length of 0,5 m, respectively 2 m and relative dielectric permittivity of 2,3 and 1,1 for the inner, respectively outer circuit	9
and 1,1 for the inner, respectively outer circuit	9
Figure 4 – Example for the extrapolation of the transfer impedance of a RG59 type cable measured with a coupling length of 2 m and assuming relative dielectric permittivity of 2,3 and 1,1 for the inner, respectively outer circuit.	10
Figure 5 – Example for the extrapolation of the scattering parameter S_{21} in logarithmic frequency scale of a RG59 type cable measured with a coupling length of 0,5 m and assuming dielectric permittivities of 2,3 and 1,1 for the inner, respectively outer circuit	
Figure 6 – Example for the extrapolation of the scattering parameter S_{21} in linear frequency scale of a RG59 type cable measured with a coupling length of 0,5 m and assuming dielectric permittivities of 2,3 and 1,1 for the inner, respectively outer circuit	12
Figure 7 – Measurement of S_{11} of the outer circuit (tube) having a length of 50 cm	14
Figure 8 – Example of test head (COMET set-up)	15
Figure 9 – Example on how to obtain the electrical length of the test head from the S_{11} measurement using a bare copper wire as DUT (COMET set-up)	16
Figure 10 – Example for an RG58 type cable in 2 m triaxial set-up (COMET)	17

INTERNATIONAL ELECTROTECHNICAL COMMISSION

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-16: Electromagnetic compatibility (EMC) –
Extension of the frequency range to higher frequencies
for transfer impedance and to lower frequencies for screening
attenuation measurements using the triaxial set-up

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

 IEC 62153-4-16:2016
- 4) In order to promote international uniformity of EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62153-4-16 has been prepared by IEC technical committee 46: Cables, wires, waveguides, RF connectors, RF and microwave passive components and accessories.

The text of this standard is based on the following documents:

FDIS	Report on voting
46/615/FDIS	46/622/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62153 series, published under the general title *Metallic* communication cable test methods, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 62153-4-16:2016</u> https://standards.iteh.ai/catalog/standards/sist/847c9b06-fd67-4b88-9c05-a33b72c57cdf/iec-62153-4-16-2016

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-16: Electromagnetic compatibility (EMC) –
Extension of the frequency range to higher frequencies
for transfer impedance and to lower frequencies for screening
attenuation measurements using the triaxial set-up

1 Scope

This part of IEC 62153 describes a method to extrapolate the test results of transfer impedance to higher frequencies and the test results of screening attenuation to lower frequencies when measured with the triaxial set-up according to IEC 62153-4-3 (method B) respectively IEC 62153-4-4. A similar approach to extrapolate the test results of transfer impedance to higher frequencies was already described in IEC 61196-1:1995 Subclause 12.2. This method is applicable for homogenous screens, i.e. screens having a transfer impedance directly proportional to length. The transfer impedance may have any frequency behaviour, i.e. it could have a behaviour where it does not increase with 20 dB per decade as observed for screens made of a foil and a braid.

2 Normative references STANDARD PREVIEW

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

https://standards.itch.ai/catalog/standards/sist/847c9b06-fd67-4b88-9c05-

a33b72c57cdf/iec-62153-4-16-2016

IEC TS 62153-4-1:2014, Metallic communication cable test methods – Part 4-1: Electromagnetic compatibility (EMC) – Introduction to electromagnetic screening measurements

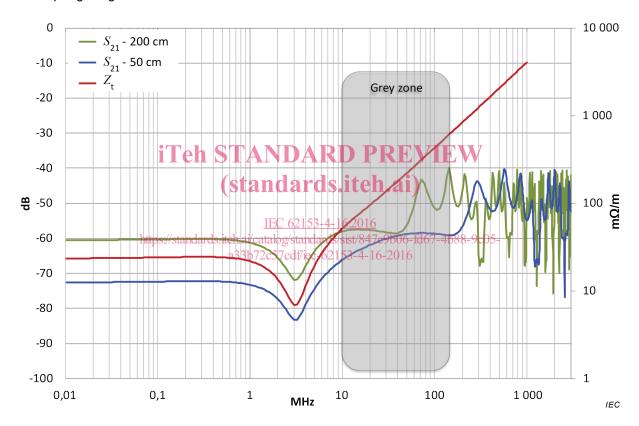
IEC 62153-4-3, Metallic communication cable test methods – Part 4-3: Electromagnetic compatibility (EMC) – Surface transfer impedance – Triaxial method

IEC 62153-4-4, Metallic communication cable test methods – Part 4-4: Electromagnetic compatibility (EMC) – Test method for measuring of the screening attenuation as up to and above 3 GHz. triaxial method

IEC 61156-1:2007, Multicore and symmetrical pair/quad cables for digital communications – Part 1: Generic specification IEC 61156-1:2007/AMD1:2009

IEC TR 62152:2009, Transmission properties of cascaded two-ports or quadripols – Background of terms and definitions

3 Acronyms


CUT cable under test

DUT device under test

4 Overview

The triaxial set-up can be used to measure both the surface transfer impedance (IEC 62153-4-3) and the screening attenuation (IEC 62153-4-4). The transfer impedance is in general measured with a coupling length of max. 0,5 m resulting in an upper frequency limit of around 100 MHz, whereas the screening attenuation is in general measured with a coupling length of 2 m to 3 m resulting in a upper frequency limit for the transfer impedance of around 10 MHz and a lower frequency limit for the screening attenuation of around 100 MHz (see also IEC TS 62153-4-1:2014 Clause 8 and 9).

Figure 1 shows the grey zone between electrically short (measurement range for the transfer impedance) and electrically long (measurement range for the screening attenuation). In the example, the transfer impedance can be measured up to around 30 MHz using a coupling length of 50 cm and the screening attenuation can be measured starting from 150 MHz using a coupling length of 200 cm.

Simulation using following parameters:

- simulated measurement of S_{21} according IEC 62153-4-3 method B, where the value of the load resistor equals the characteristic impedance of the CUT:
 - impedance of inner circuit is 50 Ω ;
 - impedance of outer circuit is 150 Ω ;
 - relative dielectric permittivity of inner circuit 2,3;
 - relative dielectric permittivity of outer circuit 1,1;
 - coupling length 50 cm and 200 cm.
- transfer impedance calculated according T. KLEY [2] ¹ for a copper braid design of: diameter under braid 2,95 mm, number of spindles 16, number of wires per spindle 5, wire diameter 0,12 mm, lay length 15 mm.

Figure 1 – Simulation of the scattering parameter S_{21} (left hand scale) and the transfer impedance (right hand scale) for a single braid screen

¹ Figures in square brackets refer to the Bibliography.

The present document describes how to extrapolate the test results of transfer impedance to higher frequencies and the test results of screening attenuation to lower frequencies when measured with the triaxial set-up according to IEC 62153-4-3 (method B), respectively IEC 62153-4-4.

5 Frequency behaviour of the triaxial set-up

Knowing the frequency behaviour of the triaxial set-up one may convert a screening attenuation measurement to transfer impedance and vice versa. And on the other hand, one may extend the results of the measured transfer impedance to higher frequencies.

The general equations for the coupling between the inner and outer circuit for any load conditions are described in [2] and [3].

In the following, the capacitive coupling through the screen and the attenuation of the inner and outer circuit are neglected and the CUT is considered to be matched at the near and far end. In this case, the frequency behaviour of the triaxial set-up is obtained from the coupling equations given in IEC TS 62153-4-1:2014, 9.2.2:

$$F = -\frac{1}{N} \frac{1}{1 - n^2} \frac{j}{x} \left\{ \left[\cos x - \cos nx \right] - j \left[n \sin nx - \sin x \right] \right\}$$
 (1)

iTeh STANDARD PREVIEW
$$N = \{\cos x + j \sin x\} \times \{\cos nx + jv \sin nx\}$$
(standards.iteh.ai)
(2)

$$x = \beta_{1}^{1} \underbrace{C = 2\pi^{5} \underbrace{L + 162016}_{\text{20}} \underbrace{\delta^{\varepsilon} r 1}_{\text{1}}}_{\text{https://standards.iteh.ai/catalog/standards/sist/847} \underbrace{c}_{0}^{0}06 - fd67 - 4b88 - 9c05 - a33b72c57cdf/jec-62153 - 4 - 16 - 2016}$$
(3)

$$n = \frac{\beta_2}{\beta_1} = \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}} \tag{4}$$

$$v = \frac{Z_2}{R_{2f}} \tag{5}$$

where

F is the function describing the frequency behaviour of the triaxial set-up, where the capacitive coupling through the screen and the attenuation of the inner and outer circuit are neglected and the CUT is matched at the far end;

N is the auxiliary function;

x is the product of phase constant and coupling length;

L is the coupling length;

 $\lambda_{1,2}$ is the wave length in the inner circuit (cable), respectively outer circuit (tube);

 $\mathcal{B}_{1,2}$ is the phase constant in the inner circuit (cable), respectively outer circuit (tube);

f is the frequency;

 $\varepsilon_{r1,2}$ is the relative dielectric permittivity of the inner circuit (cable), respectively outer circuit (tube);

 c_0 is the velocity of light in free space;

n is the ratio of the velocity in the outer circuit (tube) and inner circuit (cable);

 ν is the ratio of the impedance in the outer circuit and the load resistance in the outer circuit (tube);

 Z_2 is the characteristic impedance of the outer circuit (tube);

 R_{2f} is the load resistance at the far end of the outer circuit (tube).

A different way to describe the frequency behaviour is obtained from the equations given in IEC TS 62153-4-1:2014, 10.3:

$$F = -\frac{j}{\omega L} \times \left[\frac{1 - e^{-j\varphi_1}}{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}} + \frac{1 - e^{-j\varphi_2}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}} \right] \cdot \left[\frac{c_0}{2 + \left(\frac{Z_2}{R_{2f}} - 1\right) \cdot \left(1 - e^{-j\varphi_3}\right)} \cdot e^{-j\varphi_3/2} \right]$$
(6)

$$\varphi_{1} = 2\pi \left(\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}} \right) \frac{L}{\lambda_{0}} = 2\pi f \left(\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}} \right) \frac{L}{c_{0}}$$
 (7)

$$\varphi_{2} = 2\pi \left(\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}} \right) \frac{L}{\lambda_{0}} = 2\pi f \left(\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}} \right) \frac{L}{c_{0}}$$
 (8)

iTe
$$\phi_3 S \phi_2 A \phi_1 A \pi \sqrt{\epsilon_{r2}} \frac{D}{\lambda_0} P A \pi \sqrt{\epsilon_{r2}} \sqrt{FW}$$
 (9) (standards.iteh.ai)

where

is the function describing the <u>lfrequency behaviour</u> of the triaxial set-up, where the capacitive <u>coupling through the screen and the cutternation of the inner and outer circuit</u> are neglected and <u>the CUT is matched</u> at the far end;

L is the coupling length;

 λ_0 is the wave length in free space;

 c_0 is the velocity of light in free space;

 $\varphi_{1,2,3}$ are the auxiliary functions describing the periodic variations of the frequency behaviour F;

 ω is the circular frequency $(2\pi f)$;

 $\varepsilon_{r1,2}$ is the relative dielectric permittivity of the inner circuit (cable), respectively outer circuit (tube);

 Z_2 is the characteristic impedance of the outer circuit (tube);

 R_{2f} is the load resistance at the far end the outer circuit (tube).

Figure 2 and Figure 3 show an example of the frequency behaviour (F) in linear and logarithmic frequency scale for a coupling length of 0,5 m, respectively 2 m and a relative dielectric permittivity of 2,3 and 1,1 for the inner, respectively outer circuit.

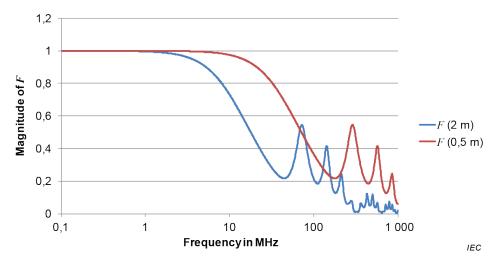


Figure 2 – Magnitude of the frequency behaviour (F) in logarithmic frequency scale for a coupling length of 0,5 m, respectively 2 m and relative dielectric permittivity of 2,3 and 1,1 for the inner, respectively outer circuit

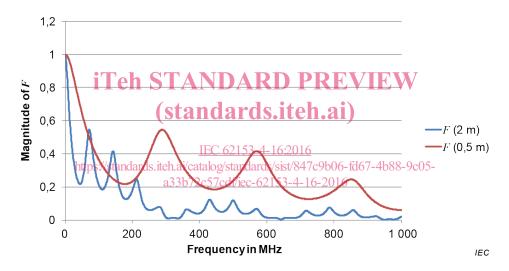


Figure 3 – Magnitude of the frequency behaviour (F) in linear frequency scale for a coupling length of 0,5 m, respectively 2 m and relative dielectric permittivity of 2,3 and 1,1 for the inner, respectively outer circuit

6 Extrapolation of measurement results

The test results of the transfer impedance shall be extrapolated to higher frequencies by using the function F according to formula (1) or (6):

$$\left| Z_{\mathsf{T},\mathsf{ex}} \right| = \frac{\left| Z_{\mathsf{T},\mathsf{meas}} \right|}{\left| F \right|} \tag{10}$$

where

 $Z_{T.ex}$ is the extrapolated transfer impedance;

 $Z_{\text{T.meas}}$ is the measured transfer impedance;

F is the frequency behaviour of the triaxial set-up, see formulae (1) and (6), where the capacitive coupling through the screen and the attenuation of the inner and outer circuit are neglected and the CUT is matched at the far end.