INTERNATIONAL STANDARD

ISO 6907

Second edition 1994-12-01

Rubber footwear — Vulcanized resin rubber and vulcanized high-hardness rubber soling materials — Specification iTeh STANDARD PREVIEW

Articles chaussants en caoutchouc — Matériaux de semelles en caoutchouc vulcanisé aux résines et caoutchoucs vulcanisés de dureté élevée — Spécifications

https://standards.iteh.ai/catalog/standards/sist/d7608787-2d5b-4c10-a685f5a9b2b12891/iso-6907-1994

Reference number ISO 6907:1994(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting FVIEW a vote.

International Standard ISO 6907 was prepared by Technical Committee ISO/TC_45, Rubber and rubber products.

<u>ISO 6907:1994</u>

This second edition candels://standurds/replacesalog(hendafil/stist/ddition?-2d5b-4c10-a685-(ISO 6907:1984), which has been technically revised?b12891/iso-6907-1994

Annex A forms an integral part of this International Standard.

© ISO 1994

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Rubber footwear — Vulcanized resin rubber and vulcanized high-hardness rubber soling materials — Specification

1 Scope

This International Standard specifies requirements for two grades of resin rubber and high-hardness rubber soling materials, for soling without a heavy pattern, for use on footwear, as follows: (standards.ten.al)

- grade 1: men's, boys' and girls' footwear;

ISO 6907:1994Determination of hardness (hardness between 10 – grade 2: women's https://www.artaforstightrds/sist/dRHD7and_1004/RHD185use, such as indoor footwear, includingaslippers91/iso-6907-1994

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most reISO 188:1982, *Rubber, vulcanized* — Accelerated ageing or heat-resistance tests.

ISO 48:1994, Rubber, vulcanized or thermoplastic -

cent editions of the standards indicated below.

Members of IEC and ISO maintain registers of cur-

ISO 2781:1988, Rubber, vulcanized — Determination of density.

3 Requirements

When tested by the methods of test indicated, the materials shall comply with the requirements given in table 1.

Property	Unit	Grade 1	Grade 2	Method of test
Density, max.	Mg/m ³	1,35	1,45	ISO 2781
Hardness, min.	IRHD	88	93	ISO 48
Tensile strength, in both directions, min.	MPa	7,5	6,5	ISO 37
Elongation at break, in both directions, min.	%	200	200	ISO 37
Elongation at break, after ageing for 168 h at 70 °C \pm 1 °C, min.	%	145	120	ISO 37 and ISO 188
Cut growth 6 mm in both directions at -5 °C \pm 2 °C, min.	kilocycles	100	50	See annex A

Table 1 — Requirements

Annex A (normative)

Resistance to cut growth (flexing test)

A.1 Principle

This test gives a measure of the resistance of soling material to cracking resulting from flexing in wear. The material is repeatedly flexed through $90^{\circ} \pm 2^{\circ}$ over a mandrel after a small cut has been made right through it with a chisel. The rate of growth of this cut is a measure of the tendency of the material to crack.

A.2 Apparatus

A.2.1 Flexing machine (Satra Ross type), having a flexing mechanism as shown in figure A.1.

The test piece A is inserted against the end stop of DA the flexing arm B and held by the clamp C in which length JK is 50 mm \pm 5 mm. The other end of the test piece is not clamped but moves in and out be-

A.2.3 Piercing chisel, to produce the initial cut in the test pieces, as illustrated in figure A.2. The cutting edge is 2 mm long, but it is usual for the length of cut produced in the material to differ a little from this. The

tween rollers D, E and F as the test piece is flexed. ISO 6 insertion of the cut in the correct position is made The flexing takes place round mandren hwhich has a get the third a cutting jig. f5a9b2b12891/iso-69 radius of curvature of 5,0 mm \pm 0,3 mm.

The distance in plan between the vertical tangent to this mandrel through point G and the adjacent edge J of clamp C is 11,0 mm ± 1,5 mm. The chisel cut previously made in the test piece is positioned vertically above the edge of the mandrel when the test piece is in the unflexed position, i.e. at point G in figure A.1. At the coincidence of the cut and the mandrel edge, the tolerance is \pm 0,5 mm.

The tops of rollers E and F and mandrel H are in the same horizontal plane and roller D is vertically above roller E. Except for this, the dimensions and positions of roller D. E and F are not critical. A suitable diameter for rollers D and E is 25 mm and for roller F is 10 mm or 15 mm. A suitable distance in plan between the centres of rollers D and E and the centre of curvature of mandrel H is 30 mm, and between the centres of rollers D and E and the centre of roller F is 25 mm or 30 mm. The vertical position of roller D is adjustable so that the gap between this and roller E can accommodate test pieces of various thickness. A locking mechanism is provided to ensure that the gap cannot change during a test.

Roller F has two adjustable collars L. Their purpose is to help to position the unclamped end of the test

A.3 **Preparation of test pieces**

The standard test piece is 25 mm wide by 150 mm long by 5,0 mm + 0,2 mm thick. Test three pieces from the soling material. Remove any pattern and reduce the thickness of the test pieces to a standard thickness by cutting and very light buffing of both sides of the test piece. Pierce each test piece, making the cut in the wearing (outer) surface, approximately 60 mm from one end, so that the length of the cut is symmetrical across the centreline of the test piece. The chisel (A.2.3) shall penetrate right through the test piece and protrude 15 mm on the other side. An adjustable collar may be fitted to the chisel shank to control the penetration distance of the chisel.

piece during insertion in the apparatus, so that the

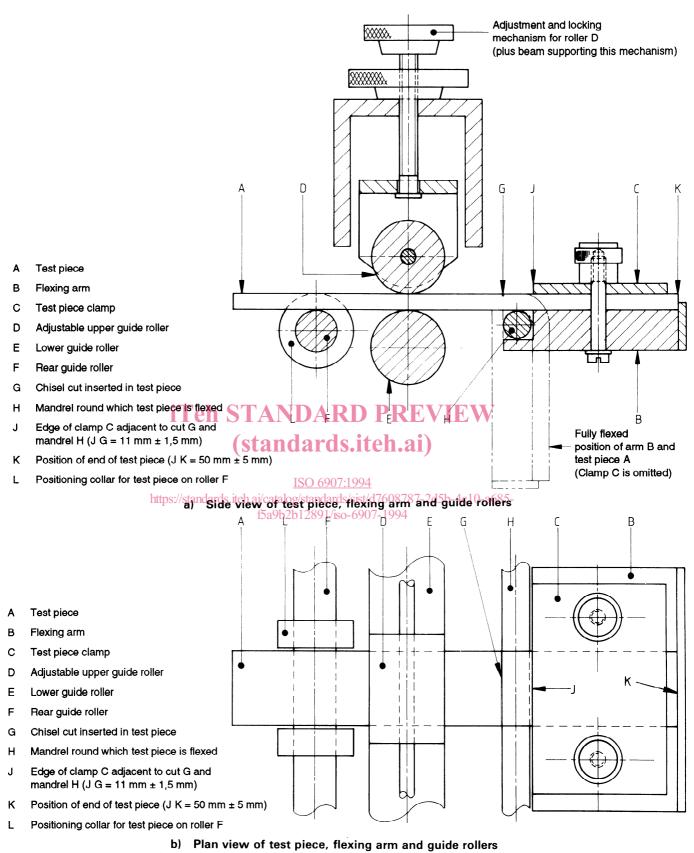
test piece is at right angles to the flexing mandrel in

plan, and to guide it in that position during flexing. The difference between the internal and external diameter

of each collar shall be about 10 mm. For the standard

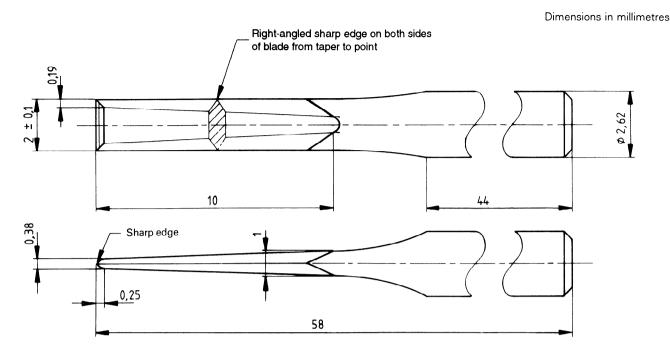
test piece, the distance between the collars shall be

A.2.2 Refrigerated cabinet, capable of being maintained at $-5 \text{ °C} \pm 2 \text{ °C}$. The driving motor of the


flexing machine (A.2.1) shall be outside the cabinet.

The frequency of flexing shall be 1,0 Hz \pm 0,1 Hz.

from 25,5 mm to 26,0 mm.


Conditioning and temperature of A.4 test

Condition the test pieces for 24 h at 23 °C ± 2 °C and test at a temperature of $-5 \text{ °C} \pm 2 \text{ °C}$. The test shall not normally be carried out less than 7 days, or more than 3 months, after moulding.

NOTE — For clarity, the adjustment and locking mechanism for roller D [shown in figure A.1 a)] has been omitted.

Figure A.1 — Flexing machine

Figure A.2 — Piercing chisel

A.5 Procedure it just touches, but does not grip, the test piece. Lock (standar this roller by tightening the wing-nut, which is on the

Same screw thread, against the frame of the machine. Make a preliminary check of the rate of flexing of the machine to ensure that it runs at the correct speed. <u>ISO 69</u>PTexing shall be started immediately the test piece is https://standards.iteh.ai/catalog/standards/osince2the_test_pieces will always be at a

Measure and record the initial length of the cut⁰inb1289 each test piece to an accuracy of 0,1 mm. This may most conveniently be done by using a magnifying eyepiece and scale with the test piece bent through 45° round a 15 mm diameter mandrel.

Turn the drive wheel of the flexing machine manually until the flexing arm B is horizontal. Raise the top roller D by slackening the knurled knobs which secure the top frame of the machine. Slacken each clamping plate C. Insert each test piece, wearing surface uppermost, from the back of the machine (the flexing arm B is assumed to be at the front) so that it passes between rollers D and E and then between the clamp C and flexing arm B and abuts against the end stop of B. Roller F and the flexing arm B are both recessed so as to assist in positioning the strip test pieces. Clamp C holds two test pieces, one on each side of the centre screw which fixes it to arm B. Check that the cut in each test piece is vertically above the edge of mandrel G, then tighten clamp C, making sure that it is parallel to the edge of the flexing arm. Should only one test piece be held in a particular clamp, insert a small piece of the same material in the recess on the other side of the clamp so that the surface of the clamp remains parallel to the surface of the flexing area when it is tightened. Screw down roller D so that

higher ruhning temperature than the cabinet because of heating by flexing, and it has been found better for the test piece to cool to this running temperature during the initial part of the test than for it to start colder, and then warm up.

After the flexing has been started, inspect the test pieces at frequent intervals (say every hour initially) for evidence of any increase in length of the initial cut, or of new cracks forming.

To do this, remove all the test pieces from the cabinet, measure the crack lengths after bending through 45° round a 15 mm mandrel, and then replace all the test pieces as described under the initial loading procedure.

If for any reason flexing is discontinued, remove the test pieces from the machine.

Flexing shall be continued

- a) either until the initial cut has increased by 6 mm or more;
- b) or until the test pieces have flexed for the specified number of cycles without the initial cut increasing in length by 6 mm.

In case b), measure the length of the crack after the specified number of cycles and calculate the amount of cut growth.

Record the temperature of test.

A.6 Expression of results

If the endpoint of the test is reached before the specified number of cycles, express the result as the number of cycles for the cut to increase in length by 6 mm.

If the test reaches the specified number of cycles (i.e. the cut does not increase in length by 6 mm after this number of flexure cycles), express the result as the increase in cut length after the specified number of cycles.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6907:1994</u> https://standards.iteh.ai/catalog/standards/sist/d7608787-2d5b-4c10-a685f5a9b2b12891/iso-6907-1994

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6907:1994</u> https://standards.iteh.ai/catalog/standards/sist/d7608787-2d5b-4c10-a685f5a9b2b12891/iso-6907-1994

ICS 61.060.00

Descriptors: rubber, vulcanized rubber, footwear, soles, specifications, mechanical properties, tests, bend tests, determination, crack strength.

Price based on 5 pages