NORME INTERNATIONALE

2781

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION •МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ •ORGANISATION INTERNATIONALE DE NORMALISATION

Caoutchoucs vulcanisés — Détermination de la masse volumique

Vulcanized rubbers - Determination of density

Première édition - 1975-05-15

CDU 678.01 : 531.75

Descripteurs: élastomère, caoutchouc vulcanisé, essai, mesurage, masse volumique.

Réf. no: ISO 2781-1975 (F)

AVANT-PROPOS

L'ISO (Organisation Internationale de Normalisation) est une fédération mondiale d'organismes nationaux de normalisation (Comités Membres ISO). L'élaboration de Normes Internationales est confiée aux Comités Techniques ISO. Chaque Comité Membre intéressé par une étude a le droit de faire partie du Comité Technique correspondant. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO, participent également aux travaux.

Les Projets de Normes Internationales adoptés par les Comités Techniques sont soumis aux Comités Membres pour approbation, avant leur acceptation comme Normes Internationales par le Conseil de l'ISO.

La Norme Internationale ISO 2781 a été établie par le Comité Technique ISO/TC 45, Élastomères et produits à base d'élastomères, et soumise aux Comités Membres en juillet 1972.

Elle a été approuvée par les Comités Membres des pays suivants :

Afrique du Sud, Rép. d' Portugal France Allemagne Hongrie Roumanie Australie Inde Royaume-Uni Autriche Irlande Sri Lanka Belgique Italie Suède Brésil Mexique Suisse Canada Nouvelle-Zélande Egypte, Rép. arabe d' Pavs-Bas

Tchécoslovaquie Thailande Pologne U.R.S.S.

U.S.A.

Aucun Comité Membre n'a désapprouvé le document.

Espagne

Caoutchoucs vulcanisés — Détermination de la masse volumique

1 OBJET ET DOMAINE D'APPLICATION

La présente Norme Internationale spécifie deux méthodes d'essai destinées à la détermination de la masse volumique des caoutchoucs vulcanisés compacts.

Ces déterminations présentent une certaine importance dans le contrôle de la qualité d'un mélange à base de caoutchoucs et dans le calcul de la masse du caoutchouc nécessaire à l'obtention d'un volume donné de vulcanisat.

La présente Norme Internationale ne concerne pas la détermination de la densité relative des caoutchoucs, qui est le rapport de la masse d'un volume donné à la masse d'un volume égal d'eau pure à une température donnée.

Dans la présente Norme Internationale, la détermination est effectuée en mesurant les forces gravitationnelles résultantes sous différentes conditions, mais, pour plus de facilité, ces forces sont exprimées en unités de masse.

2 PRINCIPE

Deux méthodes, A et B, sont spécifiées.

Dans la méthode A, les valeurs de la masse des éprouvettes sont déterminées dans l'air et dans l'eau, au moyen d'une balance équipée d'un trépied. La masse de l'éprouvette immergée est inférieure à celle dans l'air, la différence correspond à la masse d'eau déplacée, le volume d'eau déplacé étant égal à celui de l'éprouvette.

La méthode B est prévue pour être utilisée uniquement lorsqu'il est nécessaire de découper l'éprouvette en menus fragments pour éliminer les espaces d'air, comme dans le cas de tubes de faible diamètre et de câbles pour isolation électrique. Les mesurages sont effectués au moyen d'une balance et d'un pycnomètre.

3 DEFINITION

masse volumique: Masse de l'unité de volume du caoutchouc à une température spécifiée. Elle est exprimée en mégagrammes par mètre cube (mg/m³).

4 APPAREILLAGE

4.1 Balance, précise à 1 mg.

MÉTHODE A

- **4.2 Balance hydrostatique**, munie d'un trépied de dimensions convenables pour supporter le bécher et permettre la détermination de la masse de l'éprouvette dans l'eau.
- **4.3 Bécher**, de capacité 250 cm³* (ou plus petit si le modèle de la balance le nécessite).

MÉTHODE B

4.4 Pycnomètre.

5 ÉPROUVETTE

- 5.1 L'éprouvette doit être constituée par un morceau de caoutchouc ayant des surfaces lisses sans fissures ni poussières, et ayant une masse d'au moins 2,5 g. Dans le cas de la méthode B, les dimensions de l'éprouvette doivent être telles qu'elles permettent d'y découper les morceaux convenables (voir 9.3).
- 5.2 Deux essais doivent être effectués.

6 DÉLAI ENTRE VULCANISATION ET ESSAI

Sauf spécifications contraires dues à des raisons techniques, les conditions suivantes concernant le délai doivent être observées.

- **6.1** Pour tous les essais, le délai minimal entre la vulcanisation et l'essai doit être de 16 h.
- **6.2** Pour des essais effectués sur des éprouvettes ne provenant pas de produits finis, le délai maximal entre la vulcanisation et l'essai doit être de 4 semaines et, pour les mesures destinées à être comparées, les essais doivent, dans toute la mesure du possible, être effectués dans le même délai.

^{*} Le terme millilitre (ml) est couramment utilisé comme nom spécial du centimètre cube (cm³), conformément à la décision de la Douzième Conférence Générale des Poids et Mesures. Le terme millilitre est généralement admis pour désigner les capacités de la verrerie volumétrique et les volumes de liquide dans les Normes Internationales.

6.3 Pour des essais effectués sur des articles manufacturés, le délai entre la vulcanisation et l'essai ne doit pas être, toutes les fois que cela est possible, supérieur à 3 mois. Pour les autres cas, les essais doivent être effectués dans un délai de 2 mois à partir de la date de réception du produit par le client.

7 CONDITIONNEMENT DES ÉPROUVETTES

- 7.1 Les échantillons et les éprouvettes doivent être protégés de la lumière directe du soleil durant l'intervalle entre la vulcanisation et les essais.
- 7.2 Après préparation si nécessaire, les échantillons doivent être conditionnés à une température normale de laboratoire (c'est-à-dire 23 ± 2 °C ou 27 ± 2 °C durant au moins 3 h avant que les éprouvettes ne soient découpées. Ces éprouvettes peuvent être essayées immédiatement, sinon elles doivent être conservées à la température normale de laboratoire, jusqu'à l'essai. Si la préparation comprend un ponçage, l'intervalle entre le ponçage et l'essai ne doit pas dépasser 72 h.

8 TEMPÉRATURE D'ESSAI

L'essai doit être normalement effectué à une température normale de laboratoire (23 \pm 2 °C ou 27 \pm 2 °C), la même température étant utilisée pendant un essai ou une série d'essais dont les résultats doivent être comparés.

9 MODE OPÉRATOIRE

9.1 Préparation de l'échantillon

Si du tissu est fixé ou noyé dans les échantillons, il doit être enlevé avant découpage des éprouvettes. La méthode d'élimination du tissu doit, de préférence, éviter l'utilisation d'un liquide provoquant un gonflement, mais, si nécessaire, on peut utiliser un liquide approprié non toxique à bas point d'ébullition pour humecter les surfaces de contact. Prendre soin de ne pas étirer le caoutchouc au cours de la séparation du tissu et, dans le cas où l'on utilise un solvant, on doit laisser celui-ci s'évaporer complètement des surfaces du caoutchouc après séparation. Les surfaces sur lesquelles les textiles ont fait des empreintes doivent être rendues lisses par ponçage.

9.2 Méthode A

Suspendre l'éprouvette au crochet de la balance, en utilisant un fil de longueur convenable, de façon que le bas de l'éprouvette soit à environ 25 mm au-dessus du trépied. Le fil doit être en matière insoluble dans l'eau ou n'absorbant pas une quantité appréciable d'eau; il doit être soit contrebalancé, soit pesé. S'il est pesé, sa masse doit être déduite des pesées ultérieures de l'éprouvette (voir note 1).

Peser l'éprouvette, à 1 mg près, dans l'air. Répéter la pesée avec l'éprouvette (et le cavalier, si nécessaire, voir note 2) immergée dans l'eau distillée fraîchement bouillie et refroidie à une température normale de laboratoire (23 ± 2 °C, ou 27 ± 2 °C), contenue dans un bécher placé sur le trépied. Éliminer les bulles d'air adhérant à l'éprouvette (voir note 4) et déterminer la masse à 1 mg près. Observer l'aiguille durant quelques secondes pour être sûr qu'elle ne dérive pas graduellement en raison des courants de convection.

NOTES

- 1 Lorsque le filament utilisé a une masse inférieure à 0,010 g, comme dans le cas d'un filament en nylon mince, la correction à apporter à la masse n'est pas nécessaire pour garantir la précision demandée au résultat final. Si un système de suspension autre qu'un filament est utilisé, on doit tenir compte de sa masse dans le calcul final
- 2 Lorsque cette technique est utilisée pour un caoutchouc ayant une masse volumique inférieure à 1 Mg/m³, un cavalier est nécessaire. Une pesée supplémentaire du cavalier seul dans l'eau est nécessaire. Un liquide de masse volumique différente de celle de l'eau peut être également utilisé. Dans ce cas, la formule donnée en 10.1 doit être modifiée en multipliant l'expression par la masse volumique, exprimée en mégagrammes par mètre cube.
- 3 Les principales sources d'erreur sont
 - a) les bulles d'air adhérant aux surfaces de l'éprouvette au cours des pesées dans l'eau;
 - b) les effets de la tension superficielle sur le fil;
 - c) les courants de convection, dans l'eau dans laquelle l'éprouvette est suspendue. Pour les minimiser, la température de l'eau et autour de la balance doit être la même.
- 4— Afin de minimiser l'adhérence des bulles d'air sur l'éprouvette, il est permis soit d'ajouter une trace (c'est-à-dire 1 part dans 10 000) d'agent de surface, tel qu'un détergent dans l'eau distillée, soit de la plonger momentanément dans un liquide convenable tel que l'alcool méthylique ou des alcools méthyle industriels miscibles à l'eau et ayant une action de gonflement ou de retrait négligeable sur le caoutchouc. Si la dernière méthode est adoptée, des précautions doivent être prises pour minimiser le transport d'alcool dans l'eau.

9.3 Méthode B

Peser le pycnomètre, sec et propre, et son bouchon, avant et après l'introduction de l'éprouvette découpée en morceaux convenables. Les dimensions et la forme des morceaux dépendant de l'épaisseur de l'éprouvette d'origine, les morceaux doivent être tels qu'il n'y ait pas deux dimensions supérieures à 4 mm et la troisième à 6 mm. Moyennant ces restrictions, les morceaux doivent être aussi grands que possible. Tous les bords découpés doivent être lisses. Remplir complètement le pycnomètre contenant le caoutchouc avec de l'eau distillée fraîchement bouillie et refroidie à une température normale de laboratoire (23 ± 2 °C ou 27 ± 2 °C). Éliminer les bulles d'air adhérant au caoutchouc ou aux parois du pycnomètre (voir note 4).

Placer le bouchon, en s'assurant qu'il n'y ait pas d'air dans le pycnomètre ou le capillaire. Sécher soigneusement l'extérieur du pycnomètre. Le peser avec son contenu. Vider le pycnomètre complètement et le remplir avec de l'eau distillée fraîchement bouillie et refroidie. Après avoir éliminé les bulles d'air, placer le bouchon et sécher. Peser le pycnomètre et l'eau.